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| 3D Rendering: introduction

-> A 3D model is represented as a triangular mesh

= Vertex Buffer: each vertex has position, normal, texture coordinates, etc.
= Index Buffer: an array of indices to vertex buffer forming triangles

-> 30 vertex coordinates are “transformed” by multiplying them
with a 4x4 matrix, assuming 4t vertex coordinate as 1

= This performs an Affine and/or Projective transformation
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3D Rendering: introduction (cont’d)

-> Vertices (normals, tangents, etc.) are transformed hetween:
- Ohject (or "Model”) Space
- World Space
- View (or “Camera”, or "Eye”) Space
- Glip (or "Projection”) Space
-> NDC (Normalized Device Coordinates) Space
- Screen space "DelphiDay
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~  Rendering pipeline simplified

- Vertex and Index bhuffers are sent to the GPU
- Draw call is issued to the GPU

- Vertices from vertex buffer are transformed by Vertex
Shader to Screen Space

-> tach triangle is rasterized on the screen

- For every pixel in the triangle, Pixel Shader is executed on
the GPU to calculate the final pixel color "DelphiDay
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 Rendering of triangles

-> tarlier software renderers sorted triangles by depth
-> [riangles were rasterized from back to front

> Works reasonably well for very basic 3D shapes

-> Requires direct and immediate access to ALL triangles in the whole
scene for correct rendering

-> Does not work when two or more triangles intersect
-> Prone to “triangle fighting”
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Triangle sorting: practical example




~ The magic of a Depth Buffer

-> [arget rendering surface also stores depth in addition to color
= [ypically implemented using two separate rendering surfaces

= (olor rendering surface
= Depth buffer
- Etliminates the limitations of triangle sorting
- Requires more CPU work, but “free” on the GPU
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* Forward rendering technique

- DirectX 7 and earlier
-> Fixed-Function Pipeline (FFP) or Software Rendering

= 3D lighting is performed per vertex

- DirectX 8 and later
-> Programmable pipeline: shaders!
=> 3D lighting is performed per pixel

eeeeeeeeeeeeeeeee



~ Forward rendering technique (cont’d)
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~ Deferred rendering technique

- [arget rendering surface: G-Buffer
= (Color, depth, normal, material 1D, etc. (specular, reflection)
- First pass fills G-Buffer
= 30 scene geometry is rendered
- Second pass performs lighting on G-Buffer
= Lights are “rendered” as cones/spheres *DelphiDay
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| Deferred rendering technique (cont’d)
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Deferred rendering: practical example



Materials/PosterForkLift-125x148.pdf

~ Forward vs deferred rendering

- Forward rendering
= Unlimited materials, but very limited number of lights
= Antialiasing through multisampling, direct semi-transparency
= Shader complexity, significant overdraw

- Deferred rendering
= Practically unlimited number of lights, limited materials
= Antialiasing: super-sampling, selective blurring (FXAA, SMAA, TAA)
= Semi-transparency: stochastic-like tricks or through forward-rendering



- Hybrid forward/deferred rendering

- Usually involves a separate depth pre-pass
= Requires a smaller G-Buffer: depths and normals
= Practically eliminates overdraw, just like in deferred rendering

- (3-Buffer can be used for screen-space effects:
= Pepth of field (DoF), Bokeh, Ambient Occlusion (AQ), Fog

-> The screen is partitioned and only lights affecting a particular

partition are used during forward pass
= Depth comparison function is set to “equal” "DelphiDay
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~ Afterwarp v3.x: rendering technique
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Hybrid forward - deferred rendering:
practical example




~ Real-time shadows

- Gommon techniques:
- Shadow Volumes and Shadow Mapping
- [ypical characteristics:
- Hard penumbra around the shadow shape
- Noticeable “jumping” of shadow during movement
- (Other visible artifacts




~ Modern techniques for soft penumbra

- Percentage-Closer Filtering (PCF) Shadows
=> Efficient on modern GPU
=> Penumbra is noisy

- Variance Shadow Maps (VSM)

-> Noticeable depth artifacts between different objects

- Exponential Shadow Maps (ESM)

-> Noticeable light leakage at objects positions




 Realistic soft and natural shadows
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Realistic soft and natural shadouvs:
practical example




~ Order-independent transparency
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~ Order- -independent transparency (cont’d)

- Alpha-to-coverage trick
« Very fast, but requires multisampling
= Antialiasing works naturally “out of the hox”
« Fixed transparency levels: 2, 4 or 8

> dupported in all Afterwarp versions!
= Works “in place”, not accurate in HDR rendering

- Stochastic technique: somewhat similar




#) Order-independent transparency (cont’d)
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#) Order-independent transparency (cont’d)
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Order-independent transparency (0IT)-
practical example




~  Text in 3D: techniques

- Naive drawing
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practical examples

Text in 3D
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Fog: practical examples




~ \Water

- Requires special care to combine with “solid”
geometry, otherwise has ugly “cuts” at seams

- Many different techniques exist
- |n Afterwarp, this requires a depth pre-pass

« JSimulated and rendered as an infinite plane with
configurable wave animation parameters
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\Nater: practical example




 Where to go from here?

- (lobal illumination, radiosity
- Many recent research and implementations exist
- (an be costly, but improves lighting significantly

- Ray-tracing

- Supported on newer

GPUs and APIs

- Direct3D 12 and Vulkan

- Shadows, reflectior

S, refractions, etc.
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