1'-‘I~I)el|:gh|Da\/

- f\\ltatlan onferenc

30 Rendering Techniques for CAD
applications

Leveraging advanced rendering techniques in CAD applications,
powered by Afterwarp Framework

Yurily Kotsarenko

Afterwarp Interactive - Owner

N\ https://afterwarp.io

@ vkot@afterwarp.io

O https://github.com/yunkot

’\/“Delpctha\/

v »\\ltallan onferenc

19-20 Giugno 2025
Piacenza

wintech
italia

Afterwarp Framework
https://afterwarp.io

MicroPXL
https://github.com/yunkot/MicroPXL

Other Projects and Resources
https://asphyre.net

'\/‘“Delgtha\/

\\ltallan onferenc

19-20 Giugno 2025
Piacenza

wintech
italia

https://github.com/paolo-rossi
https://github.com/paolo-rossi
https://github.com/paolo-rossi
https://github.com/paolo-rossi

| 3D Rendering: introduction

-> A 3D model is represented as a triangular mesh

= Vertex Buffer: each vertex has position, normal, texture coordinates, etc.
= Index Buffer: an array of indices to vertex buffer forming triangles

-> 30 vertex coordinates are “transformed” by multiplying them
with a 4x4 matrix, assuming 4t vertex coordinate as 1

= This performs an Affine and/or Projective transformation

italian lconference

3D Rendering: introduction (cont’d)

-> Vertices (normals, tangents, etc.) are transformed hetween:
- Ohject (or "Model”) Space
- World Space
- View (or “Camera”, or "Eye”) Space
- Glip (or "Projection”) Space
-> NDC (Normalized Device Coordinates) Space
- Screen space "DelphiDay

eeeeeeeeeeeeeeeee

~ Rendering pipeline simplified

- Vertex and Index bhuffers are sent to the GPU
- Draw call is issued to the GPU

- Vertices from vertex buffer are transformed by Vertex
Shader to Screen Space

-> tach triangle is rasterized on the screen

- For every pixel in the triangle, Pixel Shader is executed on
the GPU to calculate the final pixel color "DelphiDay

eeeeeeeeeeeeeeeee

 Rendering of triangles

-> tarlier software renderers sorted triangles by depth
-> [riangles were rasterized from back to front

> Works reasonably well for very basic 3D shapes

-> Requires direct and immediate access to ALL triangles in the whole
scene for correct rendering

-> Does not work when two or more triangles intersect
-> Prone to “triangle fighting”

eeeeeeeeeeeeeeeee

Triangle sorting: practical example

~ The magic of a Depth Buffer

-> [arget rendering surface also stores depth in addition to color
= [ypically implemented using two separate rendering surfaces

= (olor rendering surface
= Depth buffer
- Etliminates the limitations of triangle sorting
- Requires more CPU work, but “free” on the GPU

eeeeeeeeeeeeeeeee

* Forward rendering technique

- DirectX 7 and earlier
-> Fixed-Function Pipeline (FFP) or Software Rendering

= 3D lighting is performed per vertex

- DirectX 8 and later
-> Programmable pipeline: shaders!
=> 3D lighting is performed per pixel

eeeeeeeeeeeeeeeee

~ Forward rendering technique (cont’d)

—

—

N
Fasy

to learn anc

to apply dif
- Multisampling ar
- Suffers from ove

- Number of simultaneous lig
= Multiple passes are required |

understan
erent

‘draw, man

ypes of
tialiasing, sem
y St

d, Si

T
T

p

9

e to work with

erials

-transparency
ader permutations
1ts is limited

or many lights

eeeeeeeeeeeeeeeee

~ Deferred rendering technique

- [arget rendering surface: G-Buffer
= (Color, depth, normal, material 1D, etc. (specular, reflection)
- First pass fills G-Buffer
= 30 scene geometry is rendered
- Second pass performs lighting on G-Buffer
= Lights are “rendered” as cones/spheres *DelphiDay

nnnnnnnnnnnnnnnnn

| Deferred rendering technique (cont’d)

- Decoupled pipeline is easier to maintain

- Number of

- Requires more
- An
- [0

jaliasing anc

5PU memory and bandwidt

ight sources is practically unlimited

1

semi-transparency are diff

al number of materials could be limited

icult

eeeeeeeeeeeeeeeee

Deferred rendering: practical example

Materials/PosterForkLift-125x148.pdf

~ Forward vs deferred rendering

- Forward rendering
= Unlimited materials, but very limited number of lights
= Antialiasing through multisampling, direct semi-transparency
= Shader complexity, significant overdraw

- Deferred rendering
= Practically unlimited number of lights, limited materials
= Antialiasing: super-sampling, selective blurring (FXAA, SMAA, TAA)
= Semi-transparency: stochastic-like tricks or through forward-rendering

- Hybrid forward/deferred rendering

- Usually involves a separate depth pre-pass
= Requires a smaller G-Buffer: depths and normals
= Practically eliminates overdraw, just like in deferred rendering

- (3-Buffer can be used for screen-space effects:
= Pepth of field (DoF), Bokeh, Ambient Occlusion (AQ), Fog

-> The screen is partitioned and only lights affecting a particular

partition are used during forward pass
= Depth comparison function is set to “equal” "DelphiDay

eeeeeeeeeeeeeeeee

~ Afterwarp v3.x: rendering technique

- Hybrid deferred and fo
- Depth pre-pass is o

- Sup

'Wd

tio

Required for fog anc

d rendering
nal

Wal

er, reduces overdraw

norts up to 65 536 simultaneous lights

- Mul

isampling antialiasing, unlimited materials

- Order-independent transparency (OIT)
= Approximated and/or accurate in a single pass

eeeeeeeeeeeeeeeee

Hybrid forward - deferred rendering:
practical example

~ Real-time shadows

- Gommon techniques:
- Shadow Volumes and Shadow Mapping
- [ypical characteristics:
- Hard penumbra around the shadow shape
- Noticeable “jumping” of shadow during movement
- (Other visible artifacts

~ Modern techniques for soft penumbra

- Percentage-Closer Filtering (PCF) Shadows
=> Efficient on modern GPU
=> Penumbra is noisy

- Variance Shadow Maps (VSM)

-> Noticeable depth artifacts between different objects

- Exponential Shadow Maps (ESM)

-> Noticeable light leakage at objects positions

 Realistic soft and natural shadows

- Afterwar
- High (

0 v3 supports ESM ar

uali ows with soft

- Smoo

'y shac

h sk

adow

transition duri
- Relatively low memory usage

d E(V)SM shadows

penumbra
ng object movement

- Uses a single atlas for multiple shadow maps
- Many shadow-casting light sources

Realistic soft and natural shadouvs:
practical example

~ Order-independent transparency

- Naive rendering of
= [Joes not work w
< Otherwise, tt

- Depth-peeling:
= Relatively slow a

= No antialiasing ot

SEI
ith m

eSe
rad

1d

her

Iltip

1dVE

i
1eavy or
than st

0nd

to
multi-pass approach

¥

Ni-transparer
{ranspa

t objects

ent layers

ne aept

1-sorted!

the GPU
per-sampling

- Afterwarp v1 supported dual depth-peeling

~ Order- -independent transparency (cont’d)

- Alpha-to-coverage trick
« Very fast, but requires multisampling
= Antialiasing works naturally “out of the hox”
« Fixed transparency levels: 2, 4 or 8

> dupported in all Afterwarp versions!
= Works “in place”, not accurate in HDR rendering

- Stochastic technique: somewhat similar

#) Order-independent transparency (cont’d)

- Weighted Average (WAVG) technique
« Relatively fast, but

= Super-sam

= Works best for trar

> dupported |
= HDR accu

1all Af

IS 4

ple antialias

Spa

ing on

ENCy

1 approximation!

y
ess or equal to 50%

erwarp versions!
ate! Rendered separately in a single-pass

#) Order-independent transparency (cont’d)

- Afterwarp v3 hash-based implementation

- Accurate with anti-

- (ptionally supports *

- Needs a discrete G

aliasir

rosted G

o' in a single-pass!

ass” eff

L

with fas

- Some integrated G

oL

L MEMO

s also work well
- Memory usage depends on the scene, controllable

ect

'y (GDDRX]

e.2. AMD)

Order-independent transparency (0IT)-
practical example

~ Text in 3D: techniques

- Naive drawing
= Blurry or pixela

- Signed Distance

« Sharp looking text, even at a
- [ext as a real 3D mesh wit

« Real-time! Can be optio

ngles, o

1 dept

nally curved.

ed text, almost unreadable

rields (SDF) w/Su

1

nerSample
ntional outline

eeeeeeeeeeeeeeeee

practical examples

Text in 3D

c
Q
n
=S
| .
G
X
)
o
=
N
e
S
=,
Q
Q
O
R
&)
vy
Q]
Q
Q
™M
S
b
S

- Aesthe!

14

- Fixed-F

apply fog c
- Fog is natt
= |ndeferred

UNG

tion Pipe

ly pleasir

rectly wh

o hides artifacts at dis

[dCE

ne and typical forward
en drawing geometry

rally a sc

‘een-space effect

- |n Afterwarp requires

a depth pre-pass

renderers

renderer it is relatively cheap to do on GPU

eeeeeeeeeeeeeeeee

Fog: practical examples

~ \Water

- Requires special care to combine with “solid”
geometry, otherwise has ugly “cuts” at seams

- Many different techniques exist
- |n Afterwarp, this requires a depth pre-pass

« JSimulated and rendered as an infinite plane with
configurable wave animation parameters

eeeeeeeeeeeeeeeee

\Nater: practical example

 Where to go from here?

- (lobal illumination, radiosity
- Many recent research and implementations exist
- (an be costly, but improves lighting significantly

- Ray-tracing

- Supported on newer

GPUs and APIs

- Direct3D 12 and Vulkan

- Shadows, reflectior

S, refractions, etc.

eeeeeeeeeeeeeeeee

r\ﬂ-belgtha

—
A\ talian onference
_J\

Discussion

v

llllllllllllllllll

	Slide 1
	Slide 2
	Slide 3
	Slide 4: 3D Rendering: introduction
	Slide 5: 3D Rendering: introduction (cont’d)
	Slide 6: Rendering pipeline simplified
	Slide 7: Rendering of triangles
	Slide 8: Triangle sorting: practical example
	Slide 9: The magic of a Depth Buffer
	Slide 10: Forward rendering technique
	Slide 11: Forward rendering technique (cont’d)
	Slide 12: Deferred rendering technique
	Slide 13: Deferred rendering technique (cont’d)
	Slide 14: Deferred rendering: practical example
	Slide 15: Forward vs deferred rendering
	Slide 16: Hybrid forward/deferred rendering
	Slide 17: Afterwarp v3.x: rendering technique
	Slide 18: Hybrid forward - deferred rendering: practical example
	Slide 19: Real-time shadows
	Slide 20: Modern techniques for soft penumbra
	Slide 21: Realistic soft and natural shadows
	Slide 22: Realistic soft and natural shadows: practical example
	Slide 23: Order-independent transparency
	Slide 24: Order-independent transparency (cont’d)
	Slide 25: Order-independent transparency (cont’d)
	Slide 26: Order-independent transparency (cont’d)
	Slide 27: Order-independent transparency (OIT): practical example
	Slide 28: Text in 3D: techniques
	Slide 29: Text in 3D: practical examples
	Slide 30: Fog
	Slide 31: Fog: practical examples
	Slide 32: Water
	Slide 33: Water: practical example
	Slide 34: Where to go from here?
	Slide 35

