
3D Rendering Techniques for CAD 
applications

Leveraging advanced rendering techniques in CAD applications, 
powered by Afterwarp Framework



Yuriy Kotsarenko

ykot@afterwarp.io

https://github.com/yunkot

https://afterwarp.io

Afterwarp Interactive - Owner
19-20 Giugno 2025

Piacenza



Afterwarp Framework
https://afterwarp.io

19-20 Giugno 2025
Piacenza

OPEN-SOURCE PROJECTS

https://github.com/yunkot

MicroPXL
https://github.com/yunkot/MicroPXL

Other Projects and Resources
https://asphyre.net

https://github.com/paolo-rossi
https://github.com/paolo-rossi
https://github.com/paolo-rossi
https://github.com/paolo-rossi


3D Rendering: introduction
➔A 3D model is represented as a triangular mesh

▪ Vertex Buffer: each vertex has position, normal, texture coordinates, etc.

▪ Index Buffer: an array of indices to vertex buffer forming triangles

➔3D vertex coordinates are “transformed” by multiplying them 
with a 4x4 matrix, assuming 4th vertex coordinate as 1
▪ This performs an Affine and/or Projective transformation



3D Rendering: introduction (cont’d)
➔Vertices (normals, tangents, etc.) are transformed between:
➔Object (or “Model”) Space
➔World Space
➔View (or “Camera”, or “Eye”) Space
➔Clip (or “Projection”) Space
➔NDC (Normalized Device Coordinates) Space
➔Screen space



Rendering pipeline simplified
➔Vertex and Index buffers are sent to the GPU
➔Draw call is issued to the GPU
➔Vertices from vertex buffer are transformed by Vertex 

Shader to Screen Space
➔ Each triangle is rasterized on the screen
➔ For every pixel in the triangle, Pixel Shader is executed on 

the GPU to calculate the final pixel color



Rendering of triangles
➔ Earlier software renderers sorted triangles by depth
➔ Triangles were rasterized from back to front
➔Works reasonably well for very basic 3D shapes
➔ Requires direct and immediate access to ALL triangles in the whole 

scene for correct rendering
➔ Does not work when two or more triangles intersect
➔ Prone to “triangle fighting”



Triangle sorting: practical example



The magic of a Depth Buffer
➔ Target rendering surface also stores depth in addition to color
➔ Typically implemented using two separate rendering surfaces

▪ Color rendering surface

▪ Depth buffer

➔ Eliminates the limitations of triangle sorting
➔Requires more CPU work, but “free” on the GPU



Forward rendering technique
➔DirectX 7 and earlier
➔ Fixed-Function Pipeline (FFP) or Software Rendering

▪ 3D lighting is performed per vertex
➔DirectX 8 and later
➔ Programmable pipeline: shaders!
➔ 3D lighting is performed per pixel



Forward rendering technique (cont’d)
➔Easy to learn and understand, simple to work with
➔ Easy to apply different types of materials
➔Multisampling antialiasing, semi-transparency
➔Suffers from overdraw, many shader permutations
➔Number of simultaneous lights is limited

▪ Multiple passes are required for many lights



Deferred rendering technique
➔Target rendering surface: G-Buffer

▪ Color, depth, normal, material ID, etc. (specular, reflection)
➔ First pass fills G-Buffer

▪ 3D scene geometry is rendered
➔Second pass performs lighting on G-Buffer

▪ Lights are “rendered” as cones/spheres



Deferred rendering technique (cont’d)
➔Decoupled pipeline is easier to maintain
➔Number of light sources is practically unlimited
➔Requires more GPU memory and bandwidth
➔Antialiasing and semi-transparency are difficult
➔ Total number of materials could be limited



Deferred rendering: practical example

Materials/PosterForkLift-125x148.pdf


Forward vs deferred rendering
➔ Forward rendering

▪ Unlimited materials, but very limited number of lights
▪ Antialiasing through multisampling, direct semi-transparency
▪ Shader complexity, significant overdraw

➔Deferred rendering
▪ Practically unlimited number of lights, limited materials
▪ Antialiasing: super-sampling, selective blurring (FXAA, SMAA, TAA)
▪ Semi-transparency: stochastic-like tricks or through forward-rendering



Hybrid forward/deferred rendering
➔Usually involves a separate depth pre-pass

▪ Requires a smaller G-Buffer: depths and normals
▪ Practically eliminates overdraw, just like in deferred rendering

➔G-Buffer can be used for screen-space effects:
▪ Depth of field (DoF), Bokeh, Ambient Occlusion (AO), Fog

➔ The screen is partitioned and only lights affecting a particular 
partition are used during forward pass
▪ Depth comparison function is set to “equal”



Afterwarp v3.x: rendering technique
➔Hybrid deferred and forward rendering
➔Depth pre-pass is optional

▪ Required for fog and water, reduces overdraw
➔Supports up to 65 536 simultaneous lights
➔Multisampling antialiasing, unlimited materials
➔Order-independent transparency (OIT)

▪ Approximated and/or accurate in a single pass



Hybrid forward - deferred rendering:
practical example



Real-time shadows
➔Common techniques: 
➔Shadow Volumes and Shadow Mapping

➔Typical characteristics:
➔Hard penumbra around the shadow shape
➔Noticeable “jumping” of shadow during movement
➔Other visible artifacts



Modern techniques for soft penumbra
➔Percentage-Closer Filtering (PCF) Shadows
➔ Efficient on modern GPU
➔ Penumbra is noisy

➔Variance Shadow Maps (VSM)
➔Noticeable depth artifacts between different objects

➔ Exponential Shadow Maps (ESM)
➔Noticeable light leakage at objects positions



Realistic soft and natural shadows
➔Afterwarp v3 supports ESM and E(V)SM shadows
➔High quality shadows with soft penumbra
➔Smooth shadow transition during object movement
➔Relatively low memory usage
➔Uses a single atlas for multiple shadow maps
➔Many shadow-casting light sources



Realistic soft and natural shadows:
practical example



Order-independent transparency
➔Naïve rendering of semi-transparent objects

▪ Does not work with multiple transparent layers
❖ Otherwise, these have to be depth-sorted!

➔Depth-peeling: traditional multi-pass approach
▪ Relatively slow and heavy on the GPU
▪ No antialiasing other than super-sampling

➔Afterwarp v1 supported dual depth-peeling



Order-independent transparency (cont’d)

➔Alpha-to-coverage trick
▪ Very fast, but requires multisampling
▪ Antialiasing works naturally “out of the box”
▪ Fixed transparency levels: 2, 4 or 8

➔Supported in all Afterwarp versions!
▪ Works “in place”, not accurate in HDR rendering

➔Stochastic technique: somewhat similar



Order-independent transparency (cont’d)

➔Weighted Average (WAVG) technique
▪ Relatively fast, but is an approximation!
▪ Super-sample antialiasing only
▪ Works best for transparency less or equal to 50%

➔Supported in all Afterwarp versions!
▪ HDR accurate! Rendered separately in a single-pass



Order-independent transparency (cont’d)

➔Afterwarp v3 hash-based implementation
➔Accurate with anti-aliasing in a single-pass!
➔Optionally supports “Frosted Glass” effect
➔Needs a discrete GPU with fast memory (GDDRx)
➔Some integrated GPUs also work well (e.g. AMD)
➔Memory usage depends on the scene, controllable



Order-independent transparency (OIT):
practical example



Text in 3D: techniques
➔Naïve drawing

▪ Blurry or pixelated text, almost unreadable
➔Signed Distance Fields (SDF) w/SuperSample

▪ Sharp looking text, even at angles, optional outline
➔Text as a real 3D mesh with depth

▪ Real-time! Can be optionally curved.



Text in 3D: practical examples



Fog
➔Aesthetically pleasing, hides artifacts at distance
➔ Fixed-Function Pipeline and typical forward renderers 

apply fog directly when drawing geometry
➔ Fog is naturally a screen-space effect

▪ In deferred renderer it is relatively cheap to do on GPU
➔ In Afterwarp requires a depth pre-pass



Fog: practical examples



Water
➔Requires special care to combine with “solid” 

geometry, otherwise has ugly “cuts” at seams
➔Many different techniques exist
➔ In Afterwarp, this requires a depth pre-pass

▪ Simulated and rendered as an infinite plane with 
configurable wave animation parameters



Water: practical example



Where to go from here?
➔Global illumination, radiosity
➔Many recent research and implementations exist
➔Can be costly, but improves lighting significantly

➔Ray-tracing
➔Supported on newer GPUs and APIs
➔Direct3D 12 and Vulkan

➔Shadows, reflections, refractions, etc.



Discussion


	Slide 1
	Slide 2
	Slide 3
	Slide 4: 3D Rendering: introduction
	Slide 5: 3D Rendering: introduction (cont’d)
	Slide 6: Rendering pipeline simplified
	Slide 7: Rendering of triangles
	Slide 8: Triangle sorting: practical example
	Slide 9: The magic of a Depth Buffer
	Slide 10: Forward rendering technique
	Slide 11: Forward rendering technique (cont’d)
	Slide 12: Deferred rendering technique
	Slide 13: Deferred rendering technique (cont’d)
	Slide 14: Deferred rendering: practical example
	Slide 15: Forward vs deferred rendering
	Slide 16: Hybrid forward/deferred rendering
	Slide 17: Afterwarp v3.x: rendering technique
	Slide 18: Hybrid forward - deferred rendering: practical example
	Slide 19: Real-time shadows
	Slide 20: Modern techniques for soft penumbra
	Slide 21: Realistic soft and natural shadows
	Slide 22: Realistic soft and natural shadows: practical example
	Slide 23: Order-independent transparency
	Slide 24: Order-independent transparency (cont’d)
	Slide 25: Order-independent transparency (cont’d)
	Slide 26: Order-independent transparency (cont’d)
	Slide 27: Order-independent transparency (OIT): practical example
	Slide 28: Text in 3D: techniques
	Slide 29: Text in 3D: practical examples
	Slide 30: Fog
	Slide 31: Fog: practical examples
	Slide 32: Water
	Slide 33: Water: practical example
	Slide 34: Where to go from here?
	Slide 35

