
THREAD-SAFETY

How to write thread-safe code



19-20 Giugno 2025
Piacenza

PAOLO ROSSI

twitter.com/awebguy

linkedin.com/in/paolo-rossi-pc

paolo@paolorossi.net

github.com/paolo-rossi

blog.paolorossi.net

WINTECH ITALIA - CTO
SENCHA & EMB. MVP



Delphi JWT
JSON Web Token Library

Delphi Neon
JSON Serialization Library

GITHUB PROJECTS

Linux Daemon
Real Linux daemons

OpenAPI-Delphi
OpenAPI 3.0 Library

NATS Delphi
NATS Client Library for Delphi

github.com/paolo-rossi

WiRL
REST Library for Delphi

https://github.com/paolo-rossi/delphi-jose-jwt
https://github.com/paolo-rossi/delphi-neon
https://github.com/paolo-rossi/linux-daemon
https://github.com/paolo-rossi/OpenAPI-Delphi
https://github.com/paolo-rossi/nats.delphi
https://github.com/paolo-rossi
https://github.com/delphi-blocks/WiRL


AGENDA
1. Introduction
2. Threads
3. Multi-thread concepts
4. Thread-safety: concepts
5. Synchronization
6. Legacy code



1Introduction



OLD CODE NEW CHALLENGES
● You probably have a C/S application

○ Forms, DataModules
● You want to (have to) build some REST, SOAP, TCP, Server
● Of course you want to reuse your old code as much as possible

○ Can you?
○ Is it safe?
○ Better to rewrite from scratch?



IN THIS SEMINAR…
● It’s not a general-purpose multi-thread course
● Focused on thread-safety
● Focused on old code refactoring

○ To be used together in new applications
○ To be used in hybrid applications



2Threads



“Standard” 
Delphi Application in 

a 
Multicore System



BENEFITS
● Responsiveness
● Speed*
● Better resource utilization
● Better encapsulation of concepts
● Simpler Program Design*



COSTS
● Context Switching Overhead
● Increased Resource Consumption
● Harder to write (correct) code
● Harder to debug and test
● Harder to port existing code





Debugging
a Multi-Thread 

Application



3MT Concepts



CONCEPTS
● Processes

○ Instances of a computer program
● Threads

○ Statements executed by a scheduler
● Pre-emptive multitasking

○ Each thread is given a finite amount of time (time-slice)



4Thread-Safety



THREAD-SAFETY
● Testing cannot prove thread-safety

○ After ton of testing, all you can say is that your code is probably 
thread-safe

● At most, testing can prove thread-(un)safety

Only “logic” can prove thread-safety



DATA THREAD-SAFETY
● Where it will be used?

○ Only Main Thread?
○ Main Thread + other threads?
○ Only secondary threads?

● What type of data?
○ It is mutable?
○ It is protected (the access)?



THREADS & UI (VCL/FMX)
● Usually the UI (VCL/FMX) is not thread-safe

○ The UI is in the Main Thread
● Never access the UI from a secondary thread

○ Decouple threads processing and UI updates



5Synchronization



CONCEPTS
● Access to the same data from different threads

○ You need to synchronize that access
● The simplest way is to “lock” the resource while using it

○ Other threads will get in queue waiting for the resource to become 
accessible

● Difference between read and write operations



CONCEPTS
● Atomic operations

○ Non-atomic operations
● Thread-safe means convert non-atomic operations in 

non-interruptible operations
● Unit System.SyncObjs



TSafeList Example
★ Create/use a thread-safe list
★ The all the code that uses the list is thread-safe?

Demo:



BUT… I DON’T USE THREADS
● Have you ever used a communication server?

○ TIdHttpServer, TIdTCPServer
● REST server’s methods

○ WiRL, RADServer
○ DataSnap (TCP or REST)

● The same rules still apply



Communication Server Example
★ Use of TIdHttpServer
★ Handle the OnCommandGet
★ Calling the event from a Button: differences?

Demo:



WHAT IS DATA?
● Variables

○ Local
○ Global

● Objects
○ Fields/Properties

● DataSets
● DataModules
● Forms



SYNC DATA ACCESS
● Only 1 thread at time can access the data (R/W)
● If you fail to synchronize

○ Race Conditions
○ Data Inconsistencies
○ Deadlocks



DATA (RESOURCES) SYNC
● Synchronize access to a global object/var between threads
● Synchronization is essential for

○ Data Integrity
○ Program Correctness
○ Preventing Undefined Behavior

● Synchronization is achieved through “synchronization 
objects”



System.SyncObjs
● TCriticalSection
● TMonitor
● TMutex
● TEvent
● TSemaphore
● TSpinLock
● TMultiReadExclusiveWriteSynchronizer
● …



Sync Objects Comparison
Unsafe 110 ms

TCriticalSection 141 ms

TMonitor 234 ms

TMutex 1422 ms

Named TMutex 1426 ms

TEvent 1340 ms

TSemaphore 1407 ms

TSpinLock 171 ms

Compiler: Delphi 10.2.3 (Tokyo)



Data Access Synchronization
★ Using a TCriticalSection
★ Using TMonitor
★ Using a TEvent

Demo:



MAIN THREAD SYNC
● How to synchronize with the main thread (UI)?

○ Call the Synchronize() method
● How Synchronize() works?

○ Execute in the main thread’s context the procedure passed as param
○ Let’s draw a diagram

● What to put in the Synchronize method
○ The less code the better

● TThread.Queue (better way)



Synchronize to the Main Thread
★ Update a label in the OnCommandGet (TIdHttpServer)
★ Example with a secondary thread

Demo:



5Legacy Code



WHERE IS THE CODE?
● Good

○ Forms: 30%
○ DataModules: 40%
○ Custom Classes: 30%

● Bad
○ Forms: 60% (+)
○ DataModules: 30%
○ Custom Classes: 10%



DATAMODULES
● Remove uses of forms and UI code!

○ uses FormXYZ
● Remove “application” events, state management, etc…

○ At least move them to another DM
● Encapsulate SQL code in ready to use functions

○ function GetOrdersCount(): Integer
○ Don’t use global queries/datasets but local variables



DataModule Refactoring (1)
★ Move “application” code to another DM
★ Transform a query result in a function

Demo:



DATASETS & UI
● DataSet + DataSource + Grid

○ The Delphi sacred triad!
● Can you leave them in the DataModule?

○ Yes, but…
○ All DataSets closed at DesignTime
○ Don’t open them in the DataModuleCreate

● The best scenario is to have separated DM for “design-time” 
datasets



DataModule Refactoring (2)
★ DataSets used at design-time
★ Where to put the TDataSource?
★ The TDataSource events

Demo:



CONNECTIONS
● 1 connection per thread
● How to achieve that?

○ Use a new connection for every query (request)
○ Use a connection pool

■ Create a new connection for a new query
■ In FireDAC there is one ready to use

○ Create a DataModule instance per thread



DataBase Connections
★ Create a new connection per request

○ Query.Connection := Connection1 → Query.Connection := NewConnection()
★ Using the connection pool *
★ Create a DM instance per thread

Demo:



SYNCRONIZE TO THE UI
● Why is it more difficult to sync with the UI

○ VCL/FMX Thread
○ OS Messaging

● How to call Synchronize()
● Synchronize() or Queue() ?



UI Synchronization
★ Call to Synchronize()
★ Call to Queue()

○ ForceQueue()
★

Demo:



SYNCHRONIZE TO DATA
● Why do I have to “protect” the access to global objects?
● When an “object/variable” is considered global?
● Where do I have to put the protection code?



CRITICAL SECTION
● TCriticalSection in unit System.SyncObjs
● Lock access to the critical section (hence the name) of code
● Steps to use it

○ Define a TCriticalSection (scope matters)
○ Create a CriticalSection
○ Acquire a CriticalSection
○ Leave a CriticalSection



MONITOR
● System.TMonitor is a record
● Like a TCriticalSection plus a condition variable
● Use only if necessary (IMHO)
● Bugs and performance problems in early XE versions



MUTEX
● Mutually Exclusive
● Like a TCriticalSection
● Used for inter-process communication



SEMAPHORE
● Like a TMutex
● You can limit access on more threads
● Access pooling (sort of)



EVENT
● Like a Mutex

○ Acquired, Released
● An event is used to signal a thread
● Used (also) to wait in the thread execution



INTERLOCKED OPERATIONS
● Static class TInterlocked (System.SyncObjs)

○ Increment, Add, Exchange, CompareExchange
● Locking is done by the CPU
● Mapped on Atomic* function in System



Data Synchronization
★ TCriticalSection

○ Where to declare the CS
○ Enter, Exit

★ Using TMonitor

Demo:



THANK YOU


