’\/“Delgtha\/

\ f\\ltatlan onferenc

SQL SERVER 2025: What's new in the engine

Focus on Optimized Locking

Slide e demo: hit.ly/delphiday2025-sgovoni

SERGIO GOVONI

CENTRO SOFTWARE S.P.A.

N\ segovoni.medium.com

bit.ly/sgovoni-MVP

y twitter.com/segovoni

O github.com/segovoni

in linkedin.com/in/sgovoni

'\/“Delpctha\/

\\ltallan onferenc

i+ (O Giugno 2075
Piacenza

wintech
italia

SQL command-line utility
github.com/segovoni/sqlcmdcli

Alter column with dependencies
github.com/segovoni/sp_alter_column

Conference demos
github.com/segovoni/sql-server-demos

'\/“’Delgtha\/

\\ltallan onferenc

19-20 Giugno 2025
Piacenza

wintech
italia

=> S0L Server 2025: What's new in the engine

-> Optimized locking
-> Key components
-> Underlying technologies

-> How optimized locking works
-> Jemo

SQL Server 2025
VWhats new N the
engine

EEEEEEEEEEEEEEEEE

3SQL 2025: What’s new in the engine

Increase HADR

aaaaaaaaaaaaaaaaa

40+ features inside the SQL Server engine

eeeeeeeeeeeeeeeee

L 2025 Intelligent query processing

Intelligent query
processing

Adaptive query Table variable
processing deferred compilation

Adaptive joins

==

Approximate Scalar UDF Adaptive plan Batch mode for Automatic
query processing inlining optimization row store tuning

Interleaved Query processing
execution feedback

Approximate Automatic plan
count distinct correction

Eles

sQL \

SELECT *
FROM Customer AS C
INNER JOIN Orders AS O
ON C.custkey = 0.o_custkey
WHERE O.o_totalprice > 10000;

sQL

Memory grant

SELECT columnil,
feedback

column2

FROM Tablel SRSl
WHERE columnl = @p

(o) [ORI I sausener 202
Row made Batch mode -

:DelphiDa

italian onference

B EEER’

Cardinali
Jptional

ty estimation feedback for expressions

narameter plan optimization (OPPO)

JP feec

) UJ (

back enable by default

ntimized Halloween protection
Juery Store for readable secondaries enable by default
Block future execution of problematic queries

-> ABORT_QUERY_EXECUTION

Optimized
| OCKING

Lock mode

Lock mode
Shared (s)

Update (u)

Exclusive

(x)

Description

Used for read operations that do not change or update data, such as a seLecT statement.

Used on resources that can be updated. Prevents a common form of deadlock that occurs when multiple
sessions are reading, locking, and potentially updating resources later.

Used for data-modification operations, such as INSERT, UPDATE, or DELETE . Ensures that multiple updates

cannot be made to the same resource at the same time.

:DelphiDa

italian onference

Introduction to optimized locking

eeeeeeeeeeeeeeeee

=> Optimized Locking is composed of two primary components:

=> Transaction ID (TID) Locking
=> Lock After Qualification (LAQ)

=> [ransaction ID Locking is designed to optimize memory usage
in lock management

-> | ock After Qualification eliminates the risk of lock escalation
and enhances concurrency in DML operations

-> Optimized Locking is built on two existing technologies
-> Accelerated Database Recovery (ADR)
=> Read Committed Snapshot Isolation level (RCSI)

> is mandatory, it must be
enabled at the database level

> isolation level is not a strict

requirement; it significantly enhances because LAQ is active
only when READ_COMMITTED_SNAPSHOT option is enabled

-

L]

https://learn.microsoft.com/sql/relational-databases/accelerated-database-recovery-concepts?WT.mc_id=DP-MVP-4029181
https://learn.microsoft.com/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?WT.mc_id=DP-MVP-4029181

[Accelerated Database Recovery (ADR)

eeeeeeeeeeeeeeeee

-> Read Committed Snapshot is not a separate isolation level, it
IS a modification of the read committed isolation level when

the READ_COMMIT
= When it is enabled,

'ED_SNAPSHOT option is enabled

ocks are not used to protect data from

updates by other transactions, it allows reading the last
committed version from the snapshot, reducing contention
between reads and writes. Please, verify your application
before the activation of RCSI i

L]

How optimized
OCKING WOTIKS

[Transaction ID (TID) locking in action

eeeeeeeeeeeeeeeee

-> One major cause of DML slowdowns is acquiring locks while
searching for qualifying rows. LAQ modifies the way DML
statements acquire locks

=> Without optimized locking, queries evaluate predicates row by
row, first acquiring a U lock, which is upgraded to an X lock if
the row meets the condition. The X lock remains until the
transaction ends

[
|

-> With LAQ, predicates are evaluated on the latest committed
row version without locks. If the condition is met, an X lock is
acquired for the update and released immediately after

=> This prevents blocking between concurrent queries modifying
different rows

Dermo

Results

spid

71

97

71

97

spid

97

71

97

71

71

71

Messages

v o rt v

XACT
key/page
key/page
XACT

v wait_type

SQL Server 2022 vs 2025

LockCount N

128
14165
18609

77

v WaitTime

PAGEIOLATCH_SH 52ee

LCK_M_S_XACT_MODIFY 11299

PAGEIOLATCH_EX 26009

PAGEIOLATCH_EX 24360

PREEMPTIVE_HTTP_REQUEST 15@e

PAGEIOLATCH_SH 4807

counter_name

Lock Memory (KB)

Lock Memory (KB)

v cntr_value s/ counter_time v

1024 2025-84-30 21:20:00.33555309

1120 2025-84-30 21:23:34.4508693

EE Results ¥ Messages

spid_rt

LockCount

67 keylpage 131460

e keylpage 74920

wait_type WaitTime
PAGEIOLATCH _EX 5148
LCK_M_X 8559
PAGEIOLATCH_SH 1115
MEMORY_ALLOCATION_EXT 1071
PAGEIOLATCH _EX 10509
PAGEIOLATCH_SH 1918

counter_name cntr_value counter time

Lock Memory (KB) | 880 2025-04-30 20:51:00.0316717

Lock Memory (KB) 3064 2025-04-30 20:53:52.1970706

:DelphiDa

italian onference

-> Optimized Locking represents a significant evolution in
concurrency management; it redefines how SQL Server Engine
handles locks

=> By using TID locking and LAQ, optimized locking reduces
memory consumption and eliminates the lock escalation

=> n Azure SQL Database, optimized locking is enabled by default

L]

Resources

eeeeeeeeeeeeeeeee

aka.ms/getsqlserver2025
aka.ms/sqlserver2025docs
aka.ms/ssms21
https://medium.com/codex/optimized-locking-in-azure-sql-database-concurrency-and-performance-at-the-next-level-5c77330299ab
https://medium.com/codex/optimized-locking-in-azure-sql-database-concurrency-and-performance-at-the-next-level-5c77330299ab
https://techcommunity.microsoft.com/blog/azuredbsupport/understanding-optimized-locking-in-azure-sql-database/4358636

r\ﬂ-belgtha

—
A\ talian onference
_J\

THANK YOU !

v

llllllllllllllllll

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 5: AGENDA

	SQL 2025: New in the engine
	Slide 6: 1
	Slide 7: SQL 2025: What’s new in the engine
	Slide 8: 40+ features inside the SQL Server engine
	Slide 11: SQL 2025 Intelligent query processing
	Slide 12: SQL 2025 Intelligent query processing

	Optimized Locking
	Slide 14: 2
	Slide 16: Lock mode
	Slide 17: Introduction to optimized locking
	Slide 18: Introduction to optimized locking
	Slide 19: Introduction to optimized locking
	Slide 20: Accelerated Database Recovery (ADR)
	Slide 21: Read Committed Snapshot Isolation (RCSI)

	How optimized locking works
	Slide 22: 3
	Slide 23: Transaction ID (TID) locking in action
	Slide 26: Lock After Qualification (LAQ) in action
	Slide 27: Lock After Qualification (LAQ) in action
	Slide 30: 3
	Slide 31: SQL Server 2022 vs 2025

	The end
	Slide 32: Summary
	Slide 33: Resources
	Slide 35

