3 Del|:gh|Da\/

- ;))\ltatlan onferenc

The Art of Deb j//; &@g@
10N

Do you really know how to debug?

W H

Primoz Gabrijelcic

ﬁ thedelphigeek.com
@ gabr42@gmail.com
® @ ooora2

O github.com/gabr4?2

in linkedin.com/in/gabr42

’\/“Delpctha\/

v »\\ltallan onferenc

19-20 Giugno 2025
Piacenza

wintech
italia

OmniThreadLibrary
github.com/gabr42/OmniThreadLibrary

GpDelphiUnits
github.com/gabr42/GpDelphiUnits

Chatterbox
github.com/gabr42/Chatterbox

'\/‘“Delgtha\/

\\ltallan onferenc

19-20 Giugno 2025
Piacenza

wintech
italia

https://github.com/paolo-rossi
https://github.com/paolo-rossi
https://github.com/paolo-rossi
https://github.com/paolo-rossi

8

thedelphigeek.com

The Delphi Geek

random ramblings on Delphi, programming, Delphi programming, and all the rest

Run your Delphi programs in a browser

Next Wednesday ['ll be talking about Delphi and TMS Web Caore in Ljubljana. As the presentation will be in Slovenian
language, so is the rest of this post.

Read more »

Posted by gabrd2 at 09.02 1 comment
Labels: Delphi, presentations, web

3]

Delphi and Al [7]: How good are local DeepSeek models (for Delphi)

Due to potential privacy concerns with DeepSeek servers (we’re unsure if the data sent over the paid AP is kept
private), | looked into some smaller DeepSeek models available on the Ollama com site. These models use less
complex Al with fewer parameters than the online version, but they might still be good enough for an average Delphi
programmer. We'll see.

For testing, | used a powerful RTX 4090 card with 24 GB of memory. If your graphics card has less memory, your
selection of useful models will be more limited

| asked all models the same two questions: cne on a general programming topic and another specific to the
FireMonkey platform. The first question was:

"I have a multiline string containing newline ASCII characters (TMemo.Text). | want to change it to a
single-line string with only printable ASCII characters. | could do that with BASEG4 encoding, for
example. | would, however, like to keep the text as much readable as possible by "encoding” only non-
printable characters. Is there a simple way to do that?”

You can check Codellama’s response in an older post (Codellama being the only local model | had tested so far)
Delphi and Al [5]: Encoding Multi-line Strings

Last week, | asked the same question to the online DeepSeek-Reasoning model. Check the answers in this post:
Delphi and Al [6]: DeepSeek-Reasoning Model.

The second question was:

"How can | copy text to clipboard in a Delphi Firemonkey application?"

Pages

Presentations

High Performance

PAINO2 GABRIJELCIC

Design Patterns
with Delphi

-DelphiDay

Parallel Programming

oy R URHIL | O Design Patterns
with i . L o ke | g“ with Delphi
""OmniThieadLibrary B i i

2up Epxrion

Build applications using idiomatic, extensible, and concurrent

D el p h i design patterns in Deli
High Performance) B

Master the art of concurrency, parallel programming, and
2 memory management to build fast Delphi applications
noz Gabrijelcic ¢

thedelphigesk org ‘ PRIMOZ GABRIJELCIC

https://delphi-books.com/
-DelphiDay

AGENDA

3. Tips & tricks

“Debugging is a methodical process of finding and
reducing the number of bugs, or defects, in a
computer program or a piece of electronic hardware,
thus making it behave as expected.”

--unknown

||

Be methodical!

Debugging loop

1.Make sure you can repeat the problem!
2 .Establish a hypothesis

3.Gather data

4 . Implement potential fix

5. Test

0.If not fixed, go to 2

||

Debugging loop

1.Make sure you can repeat the problem!
O If a problem appeared elsewhere, you may need a correct configuration
O Or a correct version of the code from the repository
O Or it could be a random problem that is hard to repeat

OO0k W

||

Repeat the problem!

® Bugs can depend on software configuration ...

... Or on a specific input data

... Or on specific version of your code
O If you're lucky, the bug was already fixed

... Oron an OS version
... Or on a specific hardware
... Or, especially in multithreaded code, on random chance

[|

Repeat the problem (there’s more)

® |f the problem is hard to reproduce, try
O Stress-testing
B Slow CPU, multiple clients
B Randomly pause program in debugger and resume after short time
O Reproduce exact input data from the customer’s side
B Create special version that records all the data there
B Reproduce on testing computer
O Test on multiple computers
O Debug directly on problematic installation (Remote Debugger)

O

Debugging loop

1.
2.Establish a hypothesis

O You can start with “| have absolute no idea what is going on”
O Or with “| know what the problem is!”

9 O1 =

||

Establish a hypothesis

If you have a rough idea on what could be going wrong, try
that first ©

Don’t focus on a single idea too much as it may be

completely wrong!
O Frequently it will be completely wrong

Test multiple hypotheses in parallel

O Try to confim them
O Try to reject them

[|

Debugging loop

1.

2.

3.Gather data
O Step through code, use breakpoints, inspect data
O Logging

4.
5.
6

||

Gather data

Pause the program (Breakpoints)
Inspect variables (Evalutate, Watch)

Single step through the problematic code
O Again, you may not be looking at the real reason for the problem!

Repeat

||

Automate!

Use logging
O Especially important when debugging multithreaded problems
O Pause + step + evaluate may change program behaviour

OutputDebugString, GpStuff.OutputDebugString

Console output, GpConsole

O Fast!

Any logging suite

O LoggerPro, CodeSite, Log4Delphi, Logify

Capture exception stack on problematic computer
O MadExcept, Eurekalog, JclDebug

O

oo AWN

Debugging loop

.Implement potential fix
O You cannot guarantee it will work, you can only assume

||

o oA wN -

Debugging loop

. Test

O See item 1

O

Test

Testing = failure to repeat a problem
O Testing <> guarantee that the code works

This is a problem especially in multithreaded code
O Where problem may just “hide away” because of the fix

You'll maybe have to revisit the problem at the later stage

When documenting (commit log) always state what you
believe was the cause of the problem

||

1.
2
3.
4.
S
6.

Debugging loop

If not fixed, go to 2

[|

onference

o
m
=
=

L=
)
o
|

[i<=1r=13]

Basic shortcuts - code

Ctrl+F2
F4
F5
F7
F8
Shift-F8
F9

Program reset

Run to cursor

Toggle breakpoint

Execute next line, step into funtions
Execute next line, step over functions
Execute until return from function
Run with debugging

Basic shortcuts - data

® Ctrl+F5 Add watch
® Alt+F5 Inspect
® Citrl+F7 Evaluate/Modify

Debugging with mouse

stopwatch := TStopwatch.StartNew;
= . l- stonwatch (FFlansed -0 FRunnina True: FStartTimeStamn: 1958492624 809)
® Citrl-Shift-<click> Inspect [Pt riisisss —
S&l FisHighResolution True

® Mouse hoover Evaluate s

::’; FElapsed 0
sel FRunning True

FStartTimeStamp 1958452694809 {$1C7FF42E919)

Ine

Debug Toggle Breakr F5

® <Right-click>, Debug

Toggle Comment ® Evaluate Cirl+F7
Fold Add Wa ursor Ctrl+F5

Unfold Set Next Statement
Inspect... Alt+F5
' Go to Address...
View CPU

Run to Cursor

Search For Usages...
Refactor

* Code generation

»*

> Code inlining control
» Code page
> Emit runtime type information
> Minimum enum size
> Optimization
> Record field alignment
> Stack frames
~ Debugging
> Assertions
> Debug information
> Local symbols
> Symbol reference info

* bt ot %

> Use debug .dcus
> Use imported data references

On

0

[] false
Byte

|:| false
Quad word

E true

m true

Debug information

m true

Reference info
(A true
|z true

Project and Linker options

> Data Execution Prevention compa m true
> Debug information @ true
> Enable large addresses [talse
> EXE Description

> Generate console application |:| false
> Image Base 400000
> Include remote debug symbols I:l false
> Map file Off

ebugger options

RAD Options

Component Toolbar DEbugger
Environment Variables

File Association General

Desktop and Layout
Welcome Page
Smart Codelnsight |:| Map TD32 keystrokes on run
Project Upgrading [Mark butfers read-only on run
LiveBindings

Saving and Recovering
Getlt Package Manager [C] Allow side effects and function calls in new watches

User Interface
Editor |z Prompt to rebuild projects modified while debugging

Integrated debugging

|:| Rearrange editor local menu on run

Language
Third Party Auto close views after debugging

Version Control @ Files implicitly opened while debugging

@ Modules view
|z CPU view

Modeling
Deployment

>
>
>
>
>
>
>
s

Debugger
Visualizers
Disassembly Registered debuggers

Event Log Embarcadero Windows 32-bit Debugger

Embarcadero Debuggers Embarcadero Linux 64-bit Debugger

Language Exceptions Embarcadero Windows 64-bit Debugger for Delphi

Native OS Exceptions E— e P

® Set conditional breakpoints

O Breakpoint properties

m Condition

B Pass count

B Thread

m Group

B Enable group, Disable group
O Slow!

Conditional breakpoints in code

eeeeeeeeeeeeeeeee

& ‘/‘\‘ /-\\ ~ 1F

B -

® |Implemented in the CPU Breakpoints
: G G AR
® Address breakpoint S source Breakpont.
O When code at address is executed [Data Breakpoint...

Address Breakpoint...

® Data breakpoint
O When data at address if modified

l;') debugging1.TfrmDebuggerDemo.TestCallStack(1)

on the Ca” StaCk < debugging1.TirmDebuggerDemo.TestCallStackintermediate1
O Triggers when the code @ debugging1.TfrmDebuggerDemo.btnCallStackClick($33C7640)

returns to that point

Breakpoint can be set on a function import

O Requires “Use debug .dcus”
function OpenSemaphoreW; external kernel32 name ‘'OpenSemaphorell’;
- | function OpenWaitableTimerW; external kernel32 name 'OpenWaitableTimerW';
LCyCLEbrocedure OutputDebugString; external kernel32 name 'OutputDebugStringW';
procedure OutputDebugStringA; external kernel32 name 'OutputDebugStringA’;

“g Add Watch.. Ctrl+F5

B re a k p O i nt Ca n b e S et (k) IR SD;rce Bre-zakpaint...
; I C Address Breakpoint...
Data Breakpoint...

on module load |
:r ‘ be i 2 C Mule Load Breakpoint.. k

® Open System unit
® Find procedure InitUnits

® Use “High pass count” trick to find problematic initialization
section

® Breakpoint properties
O Break (disable)
O Evaluate expression
O Log message
O Log call stack

® Combine with other breakpoint properties
O Conditional evaluation etc

® Make output more visible in debug log
OutputDebugString (#13#10'test '#13#10);

® (Conditional logging
if (condition) then
Log(some_stuff);

® On demand

var b := false;
if b then
Log(some stuff);

uses GpConsole;

Console.Writeln('xxx");
Console.Write(['The value is ', value]);

Fast

Thread-safe

Can output simple data types (incl. Pointers and Booleans)
VCL, FireMonkey, and Console applications

® Disable in one line
Console.Disabled := true;

® Use colors to enhance readability
Console.Writeln(['And the answer is {bright red on bright
yellow}', 42, "{}!']);

1r Fle Pl Y s | ~ fa) ~ -\ o [e~ Y | e e "2 ' -

— e — — (&) ™

-rs - - L, -'s U - L N - _—
S’

. Th reads Wi ndOW View Source Ctrl+V

Go to Source Ctrl+5
. ng ht'CI ICk Make Current Enter

O Freeze SEEZE All Other Thread

reeze All Other Threads
O Freeze All Other Threads .
O ThaW Watch Thaw All Threads

atches

O Thaw All Threads Name Thread

hreads Process Properties

hread Id State Stay on Top
b Projectl2.exe (37788) v Dockable
. 63676 Stopyeu DiEdRPUIIIL

Open project group
O Build all

Select first program
O Run

Select second program
O Run

Debugger is attached to all running instances

Switching between programs

eeeeeeeeeeeeeeeee

® Tools, Options, Debugger, Embarcadero Debuggers, Language
Exceptions

® Or wrap code in two breakpoints
O First disables exceptions
O Second re-enables exceptions

Language Exceptions

|z Motify on language exceptions
Exception types to ignore

|z EAbort Exceptions
@ Indy Silent Exceptions

Actions _ _
@ Microsoft DAQ Exceptions

E Break

|:| lgnore subsequent exceptions

m System.Threading.SynchronizationLockException
|z System.Threading.Thread AbortException
|z EPyStoplteration

|:| Handle subsequent exceptions

lgnoring exceptions — in code

DelphiDay

r\ﬂ-belgtha

—
A\ talian onference
_J\

THANK YOU

v

llllllllllllllllll

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: AGENDA
	Slide 7: 1
	Slide 8
	Slide 9: Be methodical!
	Slide 10: Debugging loop
	Slide 11: Debugging loop
	Slide 12: Repeat the problem!
	Slide 13: Repeat the problem (there’s more)
	Slide 14: Debugging loop
	Slide 15: Establish a hypothesis
	Slide 16: Debugging loop
	Slide 17: Gather data
	Slide 18: Automate!
	Slide 19: Debugging loop
	Slide 20: Debugging loop
	Slide 21: Test
	Slide 22: Debugging loop
	Slide 23: 2
	Slide 24: Basic shortcuts - code
	Slide 25: Basic shortcuts - data
	Slide 26: Debugging with mouse
	Slide 27: Project and Linker options
	Slide 28: Debugger options
	Slide 29: 3
	Slide 30: Conditional breakpoints
	Slide 31: Conditional breakpoints in code
	Slide 32: Hardware breakpoints
	Slide 33: Breakpoint tricks
	Slide 34: Bad ‘initialization’ section
	Slide 35: Use breakpoints for logging
	Slide 36: Logging
	Slide 37: Log to console
	Slide 38: GpConsole
	Slide 39: Multithreaded programs
	Slide 40: Debugging multiple programs
	Slide 41: Switching between programs
	Slide 42: Ignoring exceptions
	Slide 43: Ignoring exceptions – in code
	Slide 44

