
The Art of Debugging

Do you really know how to debug?

EXTENDEDEDITION



Primož Gabrijelčič

gabr42

linkedin.com/in/gabr42

gabr42@gmail.com

github.com/gabr42

thedelphigeek.com

19-20 Giugno 2025
Piacenza



OmniThreadLibrary
github.com/gabr42/OmniThreadLibrary

19-20 Giugno 2025
Piacenza

OPEN-SOURCE PROJECTS

github.com/account

GpDelphiUnits
github.com/gabr42/GpDelphiUnits

Chatterbox
github.com/gabr42/Chatterbox

https://github.com/paolo-rossi
https://github.com/paolo-rossi
https://github.com/paolo-rossi
https://github.com/paolo-rossi




https://delphi-books.com/



AGENDA

1. Strategies and pitfalls
2. Tooling
3. Tips & tricks



Strategies



“Debugging is a methodical process of finding and 

reducing the number of bugs, or defects, in a 

computer program or a piece of electronic hardware, 

thus making it behave as expected.“

--unknown



Be methodical!



1.Make sure you can repeat the problem!

2.Establish a hypothesis

3.Gather data

4.Implement potential fix

5.Test

6.If not fixed, go to 2

Debugging loop



1.Make sure you can repeat the problem!
○ If a problem appeared elsewhere, you may need a correct configuration

○ Or a correct version of the code from the repository

○ Or it could be a random problem that is hard to repeat

2.Establish a hypothesis

3.Gather data

4.Implement potential fix

5.Test

6.If not fixed, go to 2

Debugging loop



● Bugs can depend on software configuration …

● ... Or on a specific input data

● ... Or on specific version of your code
○ If you’re lucky, the bug was already fixed

● … Or on an OS version

● … Or on a specific hardware

● ... Or, especially in multithreaded code, on random chance

Repeat the problem!



● If the problem is hard to reproduce, try
○ Stress-testing

■ Slow CPU, multiple clients

■ Randomly pause program in debugger and resume after short time

○ Reproduce exact input data from the customer’s side

■ Create special version that records all the data there

■ Reproduce on testing computer

○ Test on multiple computers

○ Debug directly on problematic installation (Remote Debugger)

Repeat the problem (there’s more)



1.Make sure you can repeat the problem!

2.Establish a hypothesis
○ You can start with “I have absolute no idea what is going on”

○ Or with “I know what the problem is!”

3.Gather data

4.Implement potential fix

5.Test

6.If not fixed, go to 2

Debugging loop



● If you have a rough idea on what could be going wrong, try

that first ☺

● Don’t focus on a single idea too much as it may be 

completely wrong!
○ Frequently it will be completely wrong

● Test multiple hypotheses in parallel
○ Try to confim them

○ Try to reject them

Establish a hypothesis



Debugging loop

1.Make sure you can repeat the problem!

2.Establish a hypothesis

3.Gather data
○ Step through code, use breakpoints, inspect data

○ Logging

4.Implement potential fix

5.Test

6.If not fixed, go to 2



Gather data

● Pause the program (Breakpoints)

● Inspect variables (Evalutate, Watch)

● Single step through the problematic code
○ Again, you may not be looking at the real reason for the problem!

● Repeat



Automate!

● Use logging
○ Especially important when debugging multithreaded problems

○ Pause + step + evaluate may change program behaviour

● OutputDebugString, GpStuff.OutputDebugString

● Console output, GpConsole
○ Fast!

● Any logging suite
○ LoggerPro, CodeSite, Log4Delphi, Logify

● Capture exception stack on problematic computer
○ MadExcept, EurekaLog, JclDebug



Debugging loop

1.Make sure you can repeat the problem!

2.Establish a hypothesis

3.Gather data

4.Implement potential fix
○ You cannot guarantee it will work, you can only assume

5.Test

6.If not fixed, go to 2



Debugging loop

1.Make sure you can repeat the problem!

2.Establish a hypothesis

3.Gather data

4.Implement potential fix

5.Test
○ See item 1

6.If not fixed, go to 2



Test

● Testing = failure to repeat a problem
○ Testing <> guarantee that the code works

● This is a problem especially in multithreaded code
○ Where problem may just “hide away” because of the fix

● You’ll maybe have to revisit the problem at the later stage

● When documenting (commit log) always state what you 

believe was the cause of the problem



1.Make sure you can repeat the problem!

2.Establish a hypothesis

3.Gather data

4. Implement potential fix

5.Test

6. If not fixed, go to 2

Debugging loop



Tooling



● Ctrl+F2 Program reset

● F4 Run to cursor

● F5 Toggle breakpoint

● F7 Execute next line, step into funtions

● F8 Execute next line, step over functions

● Shift-F8 Execute until return from function

● F9 Run with debugging

Basic shortcuts - code



● Ctrl+F5 Add watch

● Alt+F5 Inspect

● Ctrl+F7 Evaluate/Modify

Basic shortcuts - data



● Ctrl-Shift-<click> Inspect

● Mouse hoover Evaluate

● <Right-click>, Debug

Debugging with mouse



Project and Linker options



Debugger options



Tips & tricks



● Set conditional breakpoints
○ Breakpoint properties

■ Condition

■ Pass count

■ Thread

■ Group

■ Enable group, Disable group

○ Slow!

Conditional breakpoints



● Conditional breakpoints in code
if (condition) then
sleep(0); // put breakpoint here

● Or use GpStuff
DebugBreak(condition);

Conditional breakpoints in code



● Implemented in the CPU

● Address breakpoint
○ When code at address is executed

● Data breakpoint
○ When data at address if modified

Hardware breakpoints



● Breakpoints can be set

on the call stack
○ Triggers when the code 

returns to that point

● Breakpoint can be set on a function import
○ Requires “Use debug .dcus”

● Breakpoint can be set

on module load

Breakpoint tricks



● Open System unit

● Find procedure InitUnits

● Use “High pass count” trick to find problematic initialization 

section

Bad ‘initialization’ section



● Breakpoint properties
○ Break (disable)

○ Evaluate expression

○ Log message

○ Log call stack

● Combine with other breakpoint properties
○ Conditional evaluation etc

Use breakpoints for logging



● Make output more visible in debug log
OutputDebugString(#13#10'test'#13#10);

● Conditional logging
if (condition) then 
Log(some_stuff);

● On demand
var b := false;
if b then
Log(some_stuff);

Logging



uses GpConsole;

Console.Writeln('xxx');

Console.Write(['The value is ', value]);

● Fast

● Thread-safe

● Can output simple data types (incl. Pointers and Booleans)

● VCL, FireMonkey, and Console applications

Log to console



● Disable in one line
Console.Disabled := true;

● Use colors to enhance readability
Console.Writeln(['And the answer is {bright red on bright 
yellow}', 42, '{}!']);

GpConsole



● Threads window

● Right-click
○ Freeze

○ Freeze All Other Threads

○ Thaw

○ Thaw All Threads

Multithreaded programs



● Open project group
○ Build all

● Select first program
○ Run

● Select second program
○ Run

● Debugger is attached to all running instances

Debugging multiple programs



● Run, Detach From Program

● Run, Attach To Process

● Sometimes unstable (can crash)

Switching between programs



● Tools, Options, Debugger, Embarcadero Debuggers, Language 

Exceptions

● Or wrap code in two breakpoints
○ First disables exceptions

○ Second re-enables exceptions

Ignoring exceptions



uses GpStuff;
var ignore := ExceptionsInDebugger.Ignore;

try

...

finally ignore := nil; end;

Ignoring exceptions – in code



THANK YOU


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: AGENDA
	Slide 7: 1
	Slide 8
	Slide 9: Be methodical!
	Slide 10: Debugging loop
	Slide 11: Debugging loop
	Slide 12: Repeat the problem!
	Slide 13: Repeat the problem (there’s more)
	Slide 14: Debugging loop
	Slide 15: Establish a hypothesis
	Slide 16: Debugging loop
	Slide 17: Gather data
	Slide 18: Automate!
	Slide 19: Debugging loop
	Slide 20: Debugging loop
	Slide 21: Test
	Slide 22: Debugging loop
	Slide 23: 2
	Slide 24: Basic shortcuts - code
	Slide 25: Basic shortcuts - data
	Slide 26: Debugging with mouse
	Slide 27: Project and Linker options
	Slide 28: Debugger options
	Slide 29: 3
	Slide 30: Conditional breakpoints
	Slide 31: Conditional breakpoints in code
	Slide 32: Hardware breakpoints
	Slide 33: Breakpoint tricks
	Slide 34: Bad ‘initialization’ section
	Slide 35: Use breakpoints for logging
	Slide 36: Logging
	Slide 37: Log to console
	Slide 38: GpConsole
	Slide 39: Multithreaded programs
	Slide 40: Debugging multiple programs
	Slide 41: Switching between programs
	Slide 42: Ignoring exceptions
	Slide 43: Ignoring exceptions – in code
	Slide 44

