
LOGIFY

Meta-Logger for Delphi

19-20 Giugno 2025
Piacenza

PAOLO ROSSI

twitter.com/awebguy

linkedin.com/in/paolo-rossi-pc

paolo@paolorossi.net

github.com/paolo-rossi

blog.paolorossi.net

WINTECH ITALIA - CTO
SENCHA & EMB. MVP

Delphi JWT
JSON Web Token Library

Delphi Neon
JSON Serialization Library

GITHUB PROJECTS

Linux Daemon
Real Linux daemons

OpenAPI-Delphi
OpenAPI 3.0 Library

NATS Delphi
NATS Client Library for Delphi

github.com/paolo-rossi

WiRL
REST Library for Delphi

https://github.com/paolo-rossi/delphi-jose-jwt
https://github.com/paolo-rossi/delphi-neon
https://github.com/paolo-rossi/linux-daemon
https://github.com/paolo-rossi/OpenAPI-Delphi
https://github.com/paolo-rossi/nats.delphi
https://github.com/paolo-rossi
https://github.com/delphi-blocks/WiRL

AGENDA
1. Logging: why, when, what, where, how
2. Challenges of the standard approach
3. Introducing Logify
4. Compare your code w/ and w/o Logify
5. Logify architecture & internals

1Logging

WHY
★ Debugging and Troubleshooting

○ Detailed record of an application's execution
○ Easier to trace the root cause of errors and unexpected behavior

★ Performance Monitoring
○ Capture performance-related data
○ Identify bottlenecks and optimize application performance

★ Security Auditing
○ Record user actions, system events, and potential security threats
○ identify and mitigate risks

WHY
★ Communication and Collaboration

○ Single source of truth
○ Efficient communication between developers and users

★ Troubleshooting Intermittent Issues
○ Capture details of intermittent errors difficult to reproduce

★ Understanding Application Behavior
○ Insights into how an application is used

★ Facilitating Fast Incident Response
○ Quickly identify the cause of incidents and take appropriate action

WHEN
★ Exceptions

○ try-except, OnException
★ (Important) parameters check
★ External (API, DLL) function return

WHEN NOT
★ Random, useless log calls

○ Like comments

WHERE (SHORT VERSION)
★ Local File

WHERE (SORTED BY LOG RELIABILITY)
1. Local File
2. EventLog
3. Database
4. Network File
5. Network Server (TCP, HTTP, etc…)
6. Cloud (S3, Blob Storage, etc…)
7. Message Service (Slack, Telegram, etc…)

WHAT
★ Write meaningful log entries

○ Context is important
★ Use log levels correctly
★ Make a distinction between signal and noise

○ Logging too much is bad as no logging

HOW
★ KISS principle

○ Log(string)
○ Log(string, level)
○ Log(Exception, string)
○ LogInfo(string), LogDebug(string), etc…

★ That’s it! that’s the (only) job for a Logger
★ No “high level” overloads

○ Objects, DataSets, etc…

LOGGING: WHAT IS NOT
★ Writing detailed performance info

○ Measuring/Benchmarking
★ Writing detailed metrics (CPU%, Memory, I/O, etc)

○ Monitoring (Prometheus, etc…)
★ Writing detailed memory usage

○ Memory management/info (FastMM, madExcept, etc…)
★ Writing function flow

○ Tracing/Benchmarking
★ Writing detailed user operations (on database)

○ Auditing

2The “Delphi” way

DELPHI & LOGGING
★ Delphi does not have a standard logging library

○ Codesite?
○ Several Logging Libraries commercial and open source

★ Delphi does not have an official Logging API (interface)
★ Logify tries to rectify this!

THE CLASSIC APPROACH
★ Pick a logging library
★ Learn the library own “API”
★ Start to write log commands according to the library

PROS
★ Pretty straightforward approach
★ Usually, libraries expose a rich set of functions to interact with the

log
★

CONS
★ What if you want to change the library later on?
★ Well you must remove all the code (for the log part)
★ And restart the process

○ Pick a new logging library
○ Learn the library own “API”
○ Start to write log commands according to the library

3Logify

Logify Repository

LOGIFY
★ Main Goal: to provide a neutral API for logging
★ Open source project (MIT license)
★ Takes after the .NET logging interface

○ Same concepts as Java as well

LOGIFY
★ Logify is not a logging library

○ Although there are some simple loggers
○ Mostly written as an example
○ The file logger is quite good, though

★ Logify does not write the log itself
○ Your (usual) logging library does

★ You log using the Logify interface
★ You can “attach” to Logify your Logging Library

○ Key word can…

FEATURES
★ No dependency other than Logify.pas
★ Dummy logger implementation

○ You can use it without any real logger
★ No Direct Logger Class Dependency
★ True Decoupling
★ Future-Proofing

FEATURES

We can say that the main feature of
Logify is to do… nothing 😁

4Comparing
Code

De
mo

★ Classic approach sample log
★ Using it in another application
★ Changing the logging library

Classic approach

De
mo

★ Logify sample log
★ Using it in another application
★ Changing the logging library

Logify approach

5Logify
Internals

De
mo

★ Importing Logify.pas
★ Using Logger utility singleton

ILogger interface

De
mo

★ Logify ⇔ Your Logger
★ Creation & Logger Configuration
★ The TLoggerAdapterHelper utility class

○ function FormatMsg()
○ procedure InternalLog()
○ procedure InternalRaw()

ILoggerAdapter interface

De
mo

★ Creation of the adapter
★ Factory for DebugLogger & FileLogger

ILoggerAdapterFactory interface

LOGIFY ARCHITECTURE

THANK YOU

