
Best Practices to migrate Delphi 
Projects

C/S → MULTITIER



 

Paolo Rossi
WINTECH ITALIA CTO

Delphi dev
web dev



Paolo Rossi

SENCHA
MVP

EMBARCADERO 
MVP

 



BLOG
CODING IS FUN

blog.paolorossi.net

 

http://blog.paolorossi.net/


GITHUB
PROJECTS

github.com/paolo-rossi

 

https://github.com/paolo-rossi


GITHUB
PROJECTS

Delphi JWT
JSON Web Token Library for REST

(and not only REST)

Delphi Neon
JSON Serialization Library for REST

(and not only REST)

 

https://github.com/paolo-rossi/delphi-jose-jwt
https://github.com/paolo-rossi/delphi-neon


GITHUB
PROJECTS

Linux Daemon
Library to build real Linux daemons

OpenAPI-Delphi
OpenAPI 3.0 library for Delphi

 

https://github.com/paolo-rossi/linux-daemon
https://github.com/paolo-rossi/OpenAPI-Delphi


GITHUB
PROJECTS

WiRL Project
JAX-RS Like REST Library for Delphi

 

https://github.com/delphi-blocks/WiRL


GITHUB
PROJECTS

github.com/paolo-rossi

 

https://github.com/paolo-rossi


AGENDA
➔ Introduction
➔ The past: Delphi C/S apps

◆ Good planning and architecture
◆ 20 (more) years

➔ n-tier architecture
◆ DB-based apps (big C/S apps)
◆ Automation apps 
◆ IoT gateway/supervisor



INTRODUCTION



➔ The typical Delphi app
◆ C/S apps with LAN based DB connectivity
◆ (Several BDE-based applications)
◆ Socket communication only for devices
◆ HTTP communication only to interact with some (simple) web server
◆ SOAP clients with some third party server

DELPHI APPS



USE SCENARIO
C/S applications n-tier applications

LAN clients LAN clients
Web apps
Mobile apps
Automation apps
IoT gateway/supervisor



➔ The typical Delphi app
◆ C/S app with LAN based DB connectivity
◆ Still BDE-based applications
◆ Very rich UI (sometimes too rich!)
◆ UI components attached directly to design-time datasets
◆ A lot of events to glue it all

C/S -> N-TIER

The very definition of a monolith!



➔ It’s a 2008-2010 problem for other languages
➔ Delphi apps for the large part are still desktop apps with 

direct access to the database

C/S -> N-TIER

An it’s not Delphi’s fault !!

We have to fill the gap!



N-TIER



N-TIER
➔ The n-tier architecture is suitable for

◆ Web apps
◆ Mobile apps
◆ DB-based apps (classic C/S apps)
◆ Automation apps 
◆ IoT gateway/supervisor



N-TIER
➔ An n-tier app is essentially an HTTP (TCP, UDP, etc...) 

service that listens on a port
◆ Requests are from several client
◆ Requests can be at the same time
◆ At each request the server spawns a thread

➔ The data (object, variables) must be thread-safe
◆ The code that access the data must be thread-safe



THREAD SAFETY
➔ Local variables/objects are (usually) thread-safe
➔ Global variables/objects are not!
➔ Design-time components (usually) are not!
➔ UI components are not (no need to migrate these)
➔ Make routines to safely access your variables/objects

◆ Learn (at least) TCriticalSection

Demo



MIGRATION



MIGRATION
➔ What to migrate

◆ Data access units
◆ Business logic units (if any)
◆ Utility classes
◆ …

➔ Migrate or start from scratch?



1. Still using the BDE?
◆ FireDAC migration

2. Not using a DataModule?
◆ Please use a DataModule!

3. Code is not thread-safe?
◆ Make your DB code thread-safe

DATA ACCESS PORTING

Now 90% of your DB code is ready to be migrated to a service



SECURITY



SECURITY
➔ Think about security from day 0
➔ Your service(s) will be accessed from outside the LAN

◆ Meaning: Internet
➔ Never expose your database server
➔ Use REST libraries with known security implementations

◆ Use always JWT as a token that contains client side information
◆ Learn all about JWT and its use



THANK YOU


