

DELPHI DAY 2018

Delphi Performance Diagnostic

SPEAKET: PAOLO TOSSI

Paolo Rossi Delphi Dev

<u>paolo@paolorossi.net</u> <u>www.paolorossi.net</u> <u>blog.paolorossi.net</u>

AGENDA

- → Why is it important to measure?
- → The basics: The Now() function
- → Windows API to the rescue
- → System.Diagnostic and System.TimeSpan
- → TVirtualMethodInterceptor
- → 3rd party libraries

WHY IS IT IMPORTANT TO MEASURE?

Your software is evolving

BUT...

in the right direction?

EVOLUTIONARY ARCHITECTURES

"An evolutionary architecture supports guided, incremental change across multiple dimensions"

CHANGE

IS INEVITABLE

IF CHANGE

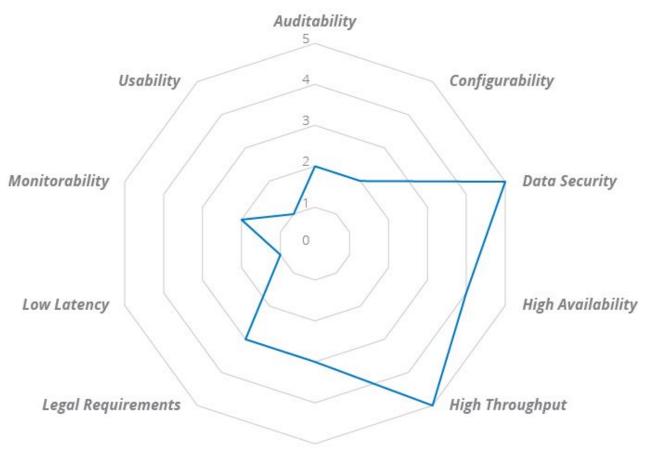
IS INEVITABLE THEN

GUIDED CHANGE

- → We want to guide the change
 - Rather than suffer from it
- → Introducing the "Fitness Functions"
 - From evolutionary computing
- → The key is to measure everything
 - More on later

DEFINITION

"An architectural **fitness function** provides an objective integrity assessment of some architectural characteristic(s)"


- → Fitness functions check that developers preserve important architectural characteristics
- → But, what is better?
- → Find a way to measure better
- → Ok, but what is a FF in reality?

- → Specific architectural requirements differ greatly across systems and organizations
- → They are based on
 - Business requirements
 - Technical capabilities
 - Client needs
 - **...**

- → Examples of FF:
 - Intense security
 - Low latency
 - Resilience to failure
- → Remember the "-ilities"
- → Fitness functions embody a protection mechanism for the "-ilities" of a given system

SYSTEMWIDE F.F.

- → Collection of FF
- → They help to "measure" the system as a whole
- → There are **tradeoff**
 - Is more important the scalability or the security?
 - ♦ So

Internationalization

REAL WORLD EXAMPLES

- → Performance
 - Server have to respond in 100ms
- → Scalability
 - System must manage up to 100.000 sessions
- → Coding standard
 - Cyclomatic complexity must be lower than 100
- → Legal requirements
 - GDPR must be complied with

REAL WORLD EXAMPLES

- → At every iteration we know how if the system remains closer the the goals
- → Save the FF and look at them over time
- → Introduce FF early (and often) to pick up inflection points
- → Measure everything

WHY PERFORMANCE?

PERFORMANCE

- → Performance is important, everyone get that, even your boss!
- → Easy to measure
- → Easy to track
- → Easy to chart

LET'S START

THE BASICS

- → The Now() function
 - Been there since Delphi 1
 - Very easy to work with
 - Doesn't need an explanation!
 - Not very precise
 - The internal clock is (was) updated about every 55ms, which gives a maximum precision of 55ms

WINDOWS API

- → GetTickCount() function
 - Very easy to use
 - Limited to 10-16 milliseconds resolution
 - DWORD (Cardinal) result, so every 49.7 days the counter resets
- → GetTickCount64() function
 - Same as GetTickCount()
 - ULONGLONG (UInt64) result, so the counter resets every 584.942.417 years

WINDOWS API

- → QueryPerformanceCounter()
 - For accurate timing
 - Easy to use (but read MS docs)
 - High precision timer < 1ms</p>
 - Used with QueryPerformanceFrequency() function
 - If the system doesn't support a high resolution timer returns 0

WINDOWS API

→ Summary

- For long periods of time you can (must) use Now() or GetTickCount()
- When you need high resolution timers (but for a brief period of time) you can use QueryPerformanceCounter()

THE DIAGNOSTICS UNIT

- → TStopWatch record
 - Available only in (new) Delphi versions
 - It's multiplatform
 - Resolution is < 1ms</p>
 - Used with the TTimeSpan record

THE DIAGNOSTICS UNIT

- → Useful properties/methods
 - Start method: starts the measuring
 - Stop method: stops measuring
 - ElapsedMilliseconds property: give you the total elapsed time (ms)
 - Elapsed property: give you the total elapsed time (ticks)
 - ◆ IsHighResolution property: tells whether the timer is a high-resolution counter

THE TIMESPAN UNIT

- → TTimeSpan record
 - Available only in (new) Delphi versions
 - It's multiplatform
 - Holds information about a period of time
 - Time can be measured in days, hours, minutes, seconds, milliseconds, and ticks
 - Several methods to convert, add, and match time periods

EXTERNAL TOOLS

- → GpProfile (Primož Gabrijelčič)
- → MemProof (Atanas Soyanov)
- → AsmProfiler (André Mussche)
- → Sampling Profiler (Eric Grange)
- → ProDelphi (Michael Adolph)
- → AQTime (SmartBear)
- → SmartInspect (SmartInspect)

CONCLUSIONS

Know what you are measuring

Duration

Resolution

Number of counters

then choose the right tool

Now()

GetTickCount()

QueryPerformanceCounter()

TStopWatch

