
Delphi vs rest of the world



PAOLO ROSSI

twitter.com/awebguy

linkedin.com/in/paolo-rossi-pc

paolo@paolorossi.net

github.com/paolo-rossi

blog.paolorossi.net

WINTECH ITALIA - CTO
11-12 Giugno 2024

Piacenza
SENCHA & EMB. MVP



Delphi JWT
JSON Web Token Library

Delphi Neon
JSON Serialization Library

GITHUB PROJECTS

Linux Daemon
Real Linux daemons

OpenAPI-Delphi
OpenAPI 3.0 Library

NATS Delphi
NATS Client Library for Delphi

github.com/paolo-rossi

WiRL
REST Library for Delphi

https://github.com/paolo-rossi/delphi-jose-jwt
https://github.com/paolo-rossi/delphi-neon
https://github.com/paolo-rossi/linux-daemon
https://github.com/paolo-rossi/OpenAPI-Delphi
https://github.com/paolo-rossi/nats.delphi
https://github.com/paolo-rossi
https://github.com/delphi-blocks/WiRL


AGENDA
1. New languages: the trend today
2. Programming paradigms: the trend today
3. Death by features
4. The case of Go
5. The case of V
6. Conclusions



1Programming 
Languages



➔ 1991 – Python
➔ 1991 – Visual Basic
➔ 1993 – Lua
➔ 1993 – R
➔ 1995 – Ruby
➔ 1995 – Ada 95

“OLD” LANGUAGES
➔ 1995 – Java
➔ 1995 – Delphi (Object 

Pascal)
➔ 1995 – JavaScript
➔ 1995 – PHP
➔ 1996 – OCaml
➔ 1997 – Rebol



➔ 2000 – ActionScript
➔ 2001 – C#
➔ 2001 – D
➔ 2003 – Scala
➔ 2009 – Go
➔ 2011 – Dart
➔ 2011 – Kotlin

NEW LANGUAGES
➔ 2012 – TypeScript
➔ 2012 – Elixir
➔ 2014 – Swift
➔ 2014 – Hack
➔ 2015 – Rust
➔ 2016 – Zig
➔ 2019 – V (Vlang)



2Paradigms



➔ Imperative
➔ Procedural
➔ Functional
➔ Reactive
➔ Declarative
➔ Object-oriented
➔ Concurrent

PARADIGMS



➔ Imperative
➔ Procedural👎
➔ Functional 👍
➔ Reactive👎
➔ Declarative
➔ Object-oriented👎(traditional)
➔ Concurrent👍

PARADIGMS TREND TODAY



3Death by 
Features



➔ Feature death is a phenomenon where the excitement and 
usage of a feature only lasts for a short while after its launch, 
and then diminishes over time

➔ It can lead to a cycle where a product development team 
becomes (only) reactive

DEATH BY FEATURES



➔ Happens when product decisions are based on a biased niche 
of users

➔ Implement only features that are in line with your product 
vision

➔ Of course, there is also death by stagnation!

DEATH BY FEATURES



4The case of Go



➔ My first encounter with Go
◆ NATS library for Delphi
◆ Sqids library for Delphi

➔ I noticed that I was able to easily convert Go code to Delphi 
code
◆ Using records and functions

➔ I could easily understand Go code: types, records, functions, 
function receivers, pointers (yes pointers!)

The case of Go



Delphi vs Go
Demo: 

● Sqids Library



➔ To solve real world code problems (a Google)
➔ C/C++ too complex, slow builds
➔ Java, C# too complex / slow
➔ Dynamic languages (Python, Javascript, ect…)

◆ Too slow
➔ Every language listes has some “pain points”

Why a new language?



➔ Slow builds
➔ Uncontrolled dependencies
➔ Each programmer using a different subset of the language
➔ Poor program understanding

◆ Code hard to read
◆ Poorly documented

➔ Cost (man hours) of updates

(Language) Pain Points



➔ “(Go) is a language that could be learned in a few days”
◆ Well probably not only “few” but…

➔ Simplicity
➔ Fast compile times
➔ Strong typing
➔ Concurrency
➔ Self-contained binaries
➔ Implicit Interfaces

Go features



➔ NATS
➔ Docker
➔ Kubernetes
➔ Caddy
➔ Prometheus
➔ Grafana
➔ InfluxDB
➔ Traefik

Applications written in Go
➔ Filebeat
➔ Podman
➔ Terraform
➔ PocketBase
➔ Github Cli
➔ Hugo
➔ CockroachDB
➔ Vault



➔ Defined in 2009 at Google
◆ Robert Griesemer
◆ Rob Pike
◆ Ken Thompson (inventor of B, the predecessor of C)

➔ Often referred as “Google version of C”
◆ Not true!

Go roots



➔ Go at Google: Language Design in the Service of Software 
Engineering
◆ https://go.dev/talks/2012/splash.article
◆ https://go.dev/talks/

➔ GopherCon 2015: Robert Griesemer - The Evolution of Go
◆ https://www.youtube.com/watch?v=0ReKdcpNyQg

Go roots



Robert Griesemer - The Evolution of Go



Oberon vs Go
Demo: 

● Oberon source <-> Go source



5The case of V



➔ Defined in 2019
◆ Alexander Medvednikov
◆ Contributions from Go devteam

➔ Probably will not be a mainstream language
➔ Designed after Go

◆ Influenced by other languages
➔ Let’s see what languages

◆ https://vlang.io/compare

The case of V

https://vlang.io/compare


THANK YOU


