
Delphi Attributes, RTTI
and real life usage cases

Dmitry Arefiev

darefiev@gmail.com

Embarcadero Technologies -
Programmer 11-12 Giugno 2024

Piacenza

AGENDA
1. Overview
2. Declaring Attributes
3. Specifying Attributes
4. Reading Attributes
5. Examples

1Overview

➔ Attributes are a language feature in Delphi that allows annotating types and
type members with special objects that carry additional information.

➔ This information can be queried at run time.
➔ Attributes extend the normal Object-Oriented model with Aspect-Oriented

elements.

Overview / Delphi Help

Common applications are:
➔ Describing. For example, a human readable description is

associated with a class property.
➔ Binding. For example, a record field is associated with a DB field

name.
➔ Processing rules. For example, a class property is marked as

optional.

Overview / Applications

➔ FName field is associated with “FullName” DB field and is
described.

➔ Without attributes: you can do the same in code, using a
dictionary.

➔ With attributes: you are concentrated on the data structure,
methods, etc.

Overview / Example
TCustomer = record
 [DBField(‘fullname’), Readable(‘The name’,‘The customer full name’)]
 FName: string;
 end;

2Declaring
Attributes

➔ An attribute is a class, inherited from TCustomAttribute
◆ If not, then E2010 error.

➔ An attribute class name should be <name>Attribute
◆ If yes, then use [name], eg [Readable]
◆ if not, then use full class name, eg [DBFieldAttr]

Declaring / TCustomAttribute

DBFieldAttr = class(TCustomAttribute);
ReadableAttribute = class(TCustomAttribute);
TCustomer = record
 [DBFieldAttr, Readable]
 FName: string;
end;

➔ Usually an attribute class has constructors.
➔ RTL calls constructor to create attribute object.
➔ Actually, attribute specification is like a constructor call without

Attribute.Create part
➔ Arguments must be of ordinary types, otherwise E2026 error

Declaring / Constructors

DBFieldAttribute = class(TCustomAttribute)
public
 constructor Create(const AName: string); overload; // OK
 constructor Create(const AField: TField); overload; // Bad
end;

3Specifying
Attributes

Attributes are listed before the annotatable item, using one of the
following syntaxes (or mixed):

Specifying / Syntax

TCustomer = record
 [DBField(‘fullname’), Readable(‘The name’,‘The customer full name’)]
 FName: string;
end;

TCustomer = record
 [DBField(‘fullname’)]
 [Readable(‘The name’,‘The customer full name’)]
 FValue: string;
end;

➔ Attribute specification is a constructor call without
Attribute.Create part.

➔ An argument value must be a simple expression, evaluated at
compile time.

➔ Unknown attribute leads to W1074 warning, not error. And the
attribute is excluded from RTTI.

➔ C++ Builder does not support Delphi attribute specifying.

Specifying / Notes

4Reading
Attributes

➔ Attributes are embedded into RTTI and saved into .dcu
➔ At run time they may be fetched using System.Rtti
➔ All RTTI classes (TRttiType, TRttiField, TRttiProperty, etc)

have methods (introduced in TRttiObject):

Reading / System.Rtti

function GetAttribute(AAttrClass: TCustomAttributeClass): TCustomAttribute;
function GetAttribute<T: TCustomAttribute>: T;
function HasAttribute(AAttrClass: TCustomAttributeClass): Boolean;
function HasAttribute<T: TCustomAttribute>: Boolean;
function GetAttributes: TArray<TCustomAttribute>;

➔ Do not not release the attribute objects. This is applicable to all
RTTI objects, eg TRttiType.

➔ You should be careful, when an application is compiled with
run-time packages, and loading/unloading them.

Reading / Notes
var
 LCtx: TRttiContext;
 LType: TRttiType;
 LAttr: DBFieldAttribute;

LCtx := TRttiContext.Create;
LType := LCtx.GetType(TypeInfo(TCustomer));
LAttr := LType.GetAttribute<DBFieldAttribute>;

➔ Reading is a relatively expensive operation. When performance is
critical, consider to cache attribute infos.

➔ To associate a Boolean value, use an “empty” attribute class,
specified only when value is True.

Reading / Hints

OptionalAttribute = class(TCustomAttribute);
TMyClass = class
 [Optional]
 FValue: Integer;
end;
...
LField.HasAttribute<OptionalAttribute>;

5Examples.

➔ Implements user friendly PropInspect.TfrmPropInspect form
➔ Uses JEDI VCL Property Inspector component

(https://github.com/project-jedi/jvcl)
➔ Introduces ReadableAttribute associating human readable

name and description with an object property.
➔ Uses PI AfterItemCreate to provide a property readable name.
➔ Uses PI OnItemSelected to show a property readable

description.

Annotating Properties in Inspector

https://github.com/project-jedi/jvcl

➔ Implements INIReaderWriter.TObjectIniReaderWriter class
➔ Introduces INIAttribute allowing to associate INI file section and

value names with an object properties.
➔ Only properties with [INI(…)] attribute are read/written.
➔ Uses existing RTL DefaultAttribute to assign a default value to

a property when INI file has no value for this property.
➔ Performance is low critical.

Persisting Object in INI file

➔ Implements DataSetReader.TRecordDataSetReader<T>
class

➔ Introduces DBFieldAttribute associating a dataset and record
fields.

➔ All record fields are loaded from dataset, if not disabled for a
record field by [DBField] attribute.

➔ To improve performance TRecordDataSetReaderBase.Bind
method is called only once for a dataset and record type.

Persisting Records in Database

➔ This is a proprietary industrial automation framework for Delphi
developed by Technolog SRL company.

➔ It is controlling industrial hardware, eg cranes, conveyors, AGV’s,
which are connected through PLC controllers to PC.

➔ Framework lets to bind a Delphi class to a PLC controller using
[PLC(…)], etc attributes.

➔ In this kind of applications the performance is very critical.

Industrial Automation Application

THANK YOU

