
REST Code Patterns
How to write less (boilerplate) code

Paolo Rossi
WINTECH ITALIA CTO

SENCHA & EMB

MVP

Delphi JWT
JSON Web Token Library

Delphi Neon
JSON Serialization Library

GITHUB PROJECTS

Linux Daemon
Real Linux daemons

OpenAPI-Delphi
OpenAPI 3.0 Library

NATS Delphi
NATS Client Library for Delphi

github.com/paolo-rossi

WiRL
REST Library for Delphi

https://github.com/paolo-rossi/delphi-jose-jwt
https://github.com/paolo-rossi/delphi-neon
https://github.com/paolo-rossi/linux-daemon
https://github.com/paolo-rossi/OpenAPI-Delphi
https://github.com/paolo-rossi/nats.delphi
https://github.com/paolo-rossi
https://github.com/delphi-blocks/WiRL

AGENDA
➔ How to free stuff
➔ Auth Server
➔ Async operations (Task Server)
➔ Automate CRUD operations

◆ Entity to SQL
◆ DataSet to Entity
◆ Base class for CRUD resource

➔ Horizontal communication (NATS)

1How to free stuff
How to free other objects from a resource method

FREEING STUFF
➔ Result is automatically freed in (almost) every framework
➔ WiRL also frees method parameters
➔ Remember [Singleton] to not free the result

USING THE OWNER
➔ When dealing with components

◆ Useful with DataModules, Queries, Connections
➔ You can free anything: beware of the order!
➔ It’s an effective but not a clean solution (IMHO)

CONTEXT INJECTION
➔ Used in WiRL from the start
➔ Used for “WiRL” objects
➔ Now it’s possible to register your own Context Factory
➔ Use it like other contexts -> [Context] Object: TMyClass

WIRL GARBAGE COLLECTOR
➔ Used to free objects
➔ Injectable with [Context]
➔ Assign to GC object or even records
➔ Used not only to free objects

◆ Finalize objects, records, arrays, etc…

2Auth Server
How to build a single auth server to manage… auth

WHY SINGLE AUTH?
➔ Not to duplicate auth-related code

◆ It’s difficult to update later
➔ To be sure to have always the latest version of auth
➔ Easier to change policies, database schema, encryption,

hashing, etc…
➔ If you have a vulnerability, it spreads across your entire API

ecosystem

HOW TO BUILD
➔ Use can use a different REST library
➔ You can use a different language! (e.g. golang)
➔ Identify the security requirements
➔ Identify the technology to use

◆ JWT
◆ SAML
◆ OAuth2

AUTH SERVER
➔ The Auth server must authenticate the user and respond with

a token (e.g. JWT)
◆ That’s it

➔ The token must be used to request from other services
◆ The token can be issued for a peculiar service (or services)
◆ Use the aud (audience) claim
◆ The service must validate against the aud claim

AUTH SERVER
➔ The Auth server must authenticate the user and respond with

a token (e.g. JWT). That’s it
➔ The token must be used to request from other services

◆ The token can be issued for a peculiar service (or services)
◆ Use the aud (audience) claim
◆ The (other) service must validate against the aud claim

3Task Server
How to approach async operations

ASYNC OPERATIONS
➔ Long operations that don’t return before request timeout

◆ Very long queries
◆ PDF or document generation
◆ Batch operations

➔ It’s not a good idea to have long requests
◆ The client can decide to act: re-launches the request, closes the client…

➔ The server must respond with a 201 or 202 code
◆ Created or Accepted

➔ And then… ?

ASYNC OPERATIONS
➔ The server responds with code and a response that contains

the task identifier so the client can ask about it later
◆ taskid: 125, status: accepted, estimated-time: 10min

➔ When the task is completed the server respond with
something like:
◆ taskid: 125, status: completed, link: /rest/taskserver/task/125

➔ Remember to set the Accept field accordingly

TASK SERVER
➔ Several options

◆ No direct communication, only through database (TASK TABLE)
◆ The Original Server (REST) contacts the Task Server (REST)
◆ The client after the first (original) request get redirected to the Task

Server (from the 201 response data)

4CRUD
Automate CRUD operations

CRUD OPERATIONS

CRUD OPERATIONS
GetCollection SELECT * FROM TABLE
GetItem SELECT * FROM TABLE WHERE ID=:ID
InsertItem INSERT INTO TABLE
UpdateItem UPDATE TABLE
DeleteItem DELETE FROM TABLE

ENTITIES & DB
➔ We don’t need an ORM in REST

◆ At least not a full featured ORM
◆ We need the automatic loading from a class definition
◆ We don’t need the caching and automatic update mechanisms

➔ Example: load from database a TPerson class
◆ Generate the SQL from TPerson (properties)
◆ Execute the SQL
◆ Load data from TDataSet to a TPerson object

ENTITIES & DB
➔ For the insert & update we need

◆ Read the JSON data considering the TPerson class
◆ Generate the SQL from TPerson (properties)
◆ Fill the SQL params with data from JSON
◆ Execute the SQL

➔ You can go from there…

EDM ENGINE
➔ Introducing the EDM engine
➔ It’s not an ORM
➔ It’s not a library (probably will be a Neon extension)
➔ It’s a sample code, you have to customize it

5Messaging
Implement horizontal communication

HORIZONTAL MESSAGING

THANK YOU

