elphiD:

)ijtalian onference
ark Hotel - Placenza B:-MACIT:GlpApE]

T-SQL performance

Tips & Tricks

Slide and demaos: https://bit.ly/3WBxPt3

https://bit.ly/3WBxPt3

’\/‘“Delgtha\/

\\ltaLlan onferenc

serGcgio govonli

centro soFTware

S.P.A wintech
italia

BLOG

N “DelphiDay

. . \\ltaLlan onferenc
segovoni.medium.com

GITHUB PROJECTS

®

github.com/segovoni

wintech
italia

-> SARGable predicates
=> NULLSs
=> Dynamic sorting

Juery mode execution
Join order
Temp table cache contention

VAN

J

SARGable
oredicates

eeeeeeeeeeeeeeeee

Wikipedia () defines SARGability in
this way:

In relational databases, a condition (or predicate) in a query is said to be
sargable if the DBMS engine can take advantage of an index to speed up the
execution of the query. The term is derived from a contraction of Search

ARGument ABLE

]

https://en.wikipedia.org/wiki/Sargable

A query failing to be sargable is known as a non-sargable query
and typically has a negative effect on query time, so one of the
steps in query optimization is to convert them to be sargable. The
effect is similar to searching for a specific term in a book that has
no index, beginning at page one each time, instead of jumping to a
list of specific pages identified in an index

]

SARGable predicates

eeeeeeeeeeeeeeeee

Demo

EEEEEEEEEEEEEEEEE

Query moae
OIrocessing

-> Row mode execution is a query processing method used with
traditional RDBMS tables, where data is stored in row format

-> When a query is executed and accesses data in row store
tables, the execution tree operators and child operators read
each required row, across all the columns specified in the table
schema

=> From each row that is read, SQL Server retrieves the columns
that are required for the result set, as referenced by a SELECT
statement, JOIN predicate, or filter predicate

]

https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide ?view=sql-server-ver15#row-mode-execution

Row mode execution

0.1% 10.5% 04% 1.7 % 27% 5.1%
31,263,601 m 31,263,601 -(31,263,601)5 62,527,202 31,263,601 31,263,601 31,263,601 31,263,601 ‘ =] 31,263,601
4N - : 4EEm 4 1 - €< < 1 C-%:
| @) @ @ & :
Compute Scalar Parallelism Stream Aggregate Window Spool Segment Sequence Project Parallelism Index Scan
(Gather Streams) (Compute Scalar) (Repartition Streams) [dbo].[bigTransactionHistory]
[IX_Productld_TransactionDa...

Sort
Reorders the input.
Node ID: 7
Physical Operation: Sort
Logical Operation: Sort
Estimated Rows: 31,263,600
Estimated 1/O Cost: 983.4300000
Estimated CPU Cost: 805.0430000
Estimated Executions: 1.0
Estimated Operator Cost: 1,788.4730000 (79.3%)
Estimated Subtree Cost: 1,964.1900000
Estimated Row Size: 19 B
Estimated Data Size: 566 MB
Memory Fractions:
In: 100.00%
Out: 100.00%
Order By:
[AdventureWorks2017].[dbo].[bigTransactionHistoryl.[ProductID] Ascending
[AdventureWorks2017].[dbo].[bigTransactionHistory].[TransactionID] Ascending
Output List:
[AdventureWorks2017].[dbo].[bigTransactionHistoryl.[ProductiD]

[AdventureWorks2017].[dbo].[bigTransactionHistory].[Quantity] D l
[AdventureWorks2017].[dbo].[bigTransactionHistory].[TransactioniD] . e

[
hiDa
onference

P

italian

-> Batch mode execution is a query processing method used to
process multiple rows together, query operators process data
more efficiently

=> Fach column within a batch is stored as a vector in a separate
area of memory, so hatch mode processing is vector-based

]

-> Batch mode processing operates on compressed data when
possible and eliminates the exchange operator used by row
mode execution. The result is better parallelism and faster
performance

]

https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide ?view=sql-server-ver15#batch-mode-execution

0.0 %

Batch mode execution

31,263,601 31,263,601
| < | <

SELECT

Parallelism
(Gather Streams)

Compute Scalar

0.6 % 55.1 %
31,263,601 31,263,601

[IE}"
Window Aggregate

Sort

Reorders the input.
Node ID: 3

Physical Operation: Sort
Logical Operation: Sort

Estimated Execution Mode: Batch

Estimated Rows: 31,263,600
Estimated I/O Cost: 337.1887000
Estimated CPU Cost: 80.5043000
Estimated Executions: 1.0
Estimated Operator Cost: 417.6930000 (55.1%)
Estimated Subtree Cost: 532.1950000
Estimated Row Size: 19 B
Estimated Data Size: 566 MB
Memory Fractions:
In: 100.00%
QOut: 100.00%
Order By:
[AdventureWorks2017].[dbo].[bigTransactionHistory].[ProductlD] Ascending

[AdventureWorks20171.[dbo].[bigTransactionHistory].[TransactionID] Ascending

Output List:
[AdventureWorks2017].[dbo].[bigTransactionHistory].[ProductiD]
[AdventureWorks2017].[dbo].[bigTransactionHistory].[Quantity]
[AdventureWorks2017].[dbo].[bigTransactionHistory].[TransactionID]

15.1 %
31,263,601

Index Scan

[dbo].[bigTransactionHistory]
[IX_ProductId_TransactionDa...

-DelphiDa

italian onference

=> SOL Server 2012 introduced a new feature to accelerate

analytical wor
-> SQL Server ex

kKloads: columnstore indexes

nanded the use cases and improved the

performance of columnstore indexes in each subsequent

release

=> S(L Server 2016 enables the creation of empty filtered
columnstore indexes

L]

=> Up to SQL Server 2017 batch mode processing requires a
columnstore index to be enabled

=> Starting with SQL Server 2019 (15.x) and in Azure SQL
Database, batch mode execution no longer requires

columnstore indexes, the feature is called
|

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?WT.mc_id=DP-MVP-4029181&view=sql-server-ver15#batch-mode-on-rowstore

Dermo

Join orger

Juery Optimizer must find the optimal sequence of joins
netween the tables used in the query, it defines the join order

-inding the optimal join order is one of the most difficult
nroblems in query optimization and it has be done within the
available time

=> Does the Query Optimizer analyze all possible join orders?
-> No, it doesn't! ®

=> |t finds a balance between the optimization time and the
quality of the resulting plan

Join order

SELECT

C.CustomerName, PS.SupplierName
FROM Sales.Customers AS C
TNNER JOIN Sales.Orders AS O

ON O.CustomerID=C.CustomerID
INNER JOIN Sales.OrderLines AS OL

ON 0.0OrderID=0OL.OrderID
INNER JOIN Warehouse.StockItems AS S
ON OL.StockItemID=S.StockItemID
INNER JOIN Purchasing.Suppliers AS PS
ON S.SupplierID=PS.SupplierID;

:Del

italian

phiDa

onference

Join order

SELECT
C.CustomerName, PS.SupplierName

FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
Hash Keys Build [WideWorldimporters].[Sales].[Customers].Custc

ON O.CustomerID=C.CustomerID Alias]
INNER JOIN Sales.OrderLines AS OL S e

Schema [Sales]

ON 0.0rderID=0L.0OrderID Table
INNER JOIN Warehouse.StockItems AS S e e L
ON OL.StockItemID=S.StockItemID e e
INNER JOIN Purchasing.Suppliers AS PS o -

ON S..Suppli&r‘ID:PS.Supplier,ID; Logical Operation

[Customers]

-DelphiDa

italian onference

Dermo

Temp taple cacne
contention

-> |t stores

=> User objects
-=> Work objects (worktable for Sort and Spool, etc.)
=> Version Store (Row Versioning)

t's always recreated after SQL Server restart
t uses simple recovery model

One tempdb for the entire instance = It's a hottleneck by
design!

vy

L]

-> [ocal temporary tables
=> Prefix “#”, Scope limited to the local session
-> Auto dropped after the session is closed

=> (lobal temporary tables
=> Prefix "##”, Visible in all sessions
-> Auto dropped after the session is closed

- [able variables
- Tables returned from the “Table Valued Functions”™

L]

- Reading the SGAM page (2:1:3) to find an extent with free
space
E) An exclusive latch is active during the update

-> Reading the PFS page (2:1:1) to find a free page within the

extent
=> An exclusive latch is active during the update

= A PAGELATCH_* wait type occurs

= Resources have the form 2:x:x
= 2:1:1, 2:1:2 and 2:1:3

]

=> [emp table caching he
allowing us to reuse ta

=> Cache a temp table obj

= When you delete that ta

ped address metadata contention by
nles

ect

nle SQL Server doesn't actually drop the metadata

= SQL Server keeps a cache of all the temporary objects that are used
through a stored procedure and then it reuses the metadata for those

objects

]

Dermo

-> One of the steps in the query optimization process is to
convert non-sargable predicates to sargable predicates

-> Pay attention to NULLS

=> S(L Server 2016 enables the creation of emp
columnstore indexes that you can use to enab

y filtered
e batch mode

execution in the OLTP scenarios without main
columnstore indexes

‘enance costs on

-> The logical join ordering is determined by the order of ON
clauses

-> [f you have a query that uses more than one table always use
aliases for all tables

Resources

eeeeeeeeeeeeeeeee

https://segovoni.medium.com/sargable-predicates-and-null-values-in-sql-server-c43ec3d8b108
https://segovoni.medium.com/sql-server-query-mode-execution-and-columnstore-indexes-fa05152c0753
https://bit.ly/3Hmcyuf
http://dataeducation.com/thinking-big-adventure
https://bit.ly/3WBxPt3

italian nfe rence

THANK YOU

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4: AGENDA

	SARGable predicates
	Slide 5: 1
	Slide 6: The definition of SARGable
	Slide 7: The definition of SARGable
	Slide 8: SARGable predicates
	Slide 9: 1

	Query mode processing
	Slide 10: 2
	Slide 11: Row mode execution
	Slide 12: Row mode execution
	Slide 13: Row mode execution
	Slide 14: Batch mode execution
	Slide 15: Batch mode execution
	Slide 16: Batch mode execution
	Slide 17: Columnstore and query mode execution
	Slide 18: Columnstore and query mode execution
	Slide 19: 2

	Join order
	Slide 20: 3
	Slide 21: Join order
	Slide 22: Join order
	Slide 23: Join order
	Slide 24: Join order
	Slide 25: 3

	Temp table cache contention
	Slide 26: 4
	Slide 27: Tempdb
	Slide 28: User objects in tempdb
	Slide 29: Creating a temp table on tempdb means
	Slide 30: Temp table cache contention
	Slide 32: 4

	The end
	Slide 37: Summary
	Slide 38: Summary
	Slide 39: Resources
	Slide 43

