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-> SARGable predicates
=> NULLSs
=> Dynamic sorting

Juery mode execution
Join order
Temp table cache contention
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Wikipedia ( ) defines SARGability in
this way:

In relational databases, a condition (or predicate) in a query is said to be
sargable if the DBMS engine can take advantage of an index to speed up the
execution of the query. The term is derived from a contraction of Search

ARGument ABLE

]


https://en.wikipedia.org/wiki/Sargable

A query failing to be sargable is known as a non-sargable query
and typically has a negative effect on query time, so one of the
steps in query optimization is to convert them to be sargable. The
effect is similar to searching for a specific term in a book that has
no index, beginning at page one each time, instead of jumping to a
list of specific pages identified in an index

]



SARGable predicates
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-> Row mode execution is a query processing method used with
traditional RDBMS tables, where data is stored in row format

-> When a query is executed and accesses data in row store
tables, the execution tree operators and child operators read
each required row, across all the columns specified in the table
schema



=> From each row that is read, SQL Server retrieves the columns
that are required for the result set, as referenced by a SELECT
statement, JOIN predicate, or filter predicate

]

https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide ?view=sql-server-ver15#row-mode-execution



Row mode execution
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Sort
Reorders the input.
Node ID: 7
Physical Operation: Sort
Logical Operation: Sort
Estimated Rows: 31,263,600
Estimated 1/O Cost: 983.4300000
Estimated CPU Cost: 805.0430000
Estimated Executions: 1.0
Estimated Operator Cost: 1,788.4730000 (79.3%)
Estimated Subtree Cost: 1,964.1900000
Estimated Row Size: 19 B
Estimated Data Size: 566 MB
Memory Fractions:
In: 100.00%
Out: 100.00%
Order By:
[AdventureWorks2017].[dbo].[bigTransactionHistoryl.[ProductID] Ascending
[AdventureWorks2017].[dbo].[bigTransactionHistory].[TransactionID] Ascending
Output List:
[AdventureWorks2017].[dbo].[bigTransactionHistoryl.[ProductiD]

[AdventureWorks2017].[dbo].[bigTransactionHistory].[Quantity] D l
[AdventureWorks2017].[dbo].[bigTransactionHistory].[TransactioniD] . e
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-> Batch mode execution is a query processing method used to
process multiple rows together, query operators process data
more efficiently

=> Fach column within a batch is stored as a vector in a separate
area of memory, so hatch mode processing is vector-based

]



-> Batch mode processing operates on compressed data when
possible and eliminates the exchange operator used by row
mode execution. The result is better parallelism and faster
performance

]

https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide ?view=sql-server-ver15#batch-mode-execution
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Batch mode execution
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Sort

Reorders the input.
Node ID: 3

Physical Operation: Sort
Logical Operation: Sort

Estimated Execution Mode: Batch

Estimated Rows: 31,263,600
Estimated I/O Cost: 337.1887000
Estimated CPU Cost: 80.5043000
Estimated Executions: 1.0
Estimated Operator Cost: 417.6930000 (55.1%)
Estimated Subtree Cost: 532.1950000
Estimated Row Size: 19 B
Estimated Data Size: 566 MB
Memory Fractions:
In: 100.00%
QOut: 100.00%
Order By:
[AdventureWorks2017].[dbo].[bigTransactionHistory].[ProductlD] Ascending

[AdventureWorks20171.[dbo].[bigTransactionHistory].[TransactionID] Ascending

Output List:
[AdventureWorks2017].[dbo].[bigTransactionHistory].[ProductiD]
[AdventureWorks2017].[dbo].[bigTransactionHistory].[Quantity]
[AdventureWorks2017].[dbo].[bigTransactionHistory].[TransactionID]
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31,263,601

Index Scan

[dbo].[bigTransactionHistory]
[IX_ProductId_TransactionDa...
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=> SOL Server 2012 introduced a new feature to accelerate

analytical wor
-> SQL Server ex

kKloads: columnstore indexes

nanded the use cases and improved the

performance of columnstore indexes in each subsequent

release

=> S(L Server 2016 enables the creation of empty filtered
columnstore indexes

L]



=> Up to SQL Server 2017 batch mode processing requires a
columnstore index to be enabled

=> Starting with SQL Server 2019 (15.x) and in Azure SQL
Database, batch mode execution no longer requires

columnstore indexes, the feature is called
|



https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?WT.mc_id=DP-MVP-4029181&view=sql-server-ver15#batch-mode-on-rowstore
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Join orger




Juery Optimizer must find the optimal sequence of joins
netween the tables used in the query, it defines the join order

-inding the optimal join order is one of the most difficult
nroblems in query optimization and it has be done within the
available time




=> Does the Query Optimizer analyze all possible join orders?
-> No, it doesn't! ®

=> |t finds a balance between the optimization time and the
quality of the resulting plan



Join order

SELECT

C.CustomerName, PS.SupplierName
FROM Sales.Customers AS C
TNNER JOIN Sales.Orders AS O

ON O.CustomerID=C.CustomerID
INNER JOIN Sales.OrderLines AS OL

ON 0.0OrderID=0OL.OrderID
INNER JOIN Warehouse.StockItems AS S
ON OL.StockItemID=S.StockItemID
INNER JOIN Purchasing.Suppliers AS PS
ON S.SupplierID=PS.SupplierID;
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Join order

SELECT
C.CustomerName, PS.SupplierName

FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
Hash Keys Build [WideWorldimporters].[Sales].[Customers].Custc

ON O.CustomerID=C.CustomerID Alias ]
INNER JOIN Sales.OrderLines AS OL S e

Schema [Sales]

ON 0.0rderID=0L.0OrderID Table
INNER JOIN Warehouse.StockItems AS S e e L
ON OL.StockItemID=S.StockItemID e e
INNER JOIN Purchasing.Suppliers AS PS o -

ON S..Suppli&r‘ID:PS.Supplier,ID; Logical Operation

[Customers]
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-> |t stores

=> User objects
-=> Work objects (worktable for Sort and Spool, etc.)
=> Version Store (Row Versioning)

t's always recreated after SQL Server restart
t uses simple recovery model

One tempdb for the entire instance = It's a hottleneck by
design!

vy

L]



-> [ocal temporary tables
=> Prefix “#”, Scope limited to the local session
-> Auto dropped after the session is closed

=> (lobal temporary tables
=> Prefix "##”, Visible in all sessions
-> Auto dropped after the session is closed

- [able variables
- Tables returned from the “Table Valued Functions”™

L]



- Reading the SGAM page (2:1:3) to find an extent with free
space
E) An exclusive latch is active during the update

-> Reading the PFS page (2:1:1) to find a free page within the

extent
=> An exclusive latch is active during the update

= A PAGELATCH_* wait type occurs

= Resources have the form 2:x:x
= 2:1:1, 2:1:2 and 2:1:3

]



=> [emp table caching he
allowing us to reuse ta

=> Cache a temp table obj

= When you delete that ta

ped address metadata contention by
nles

ect

nle SQL Server doesn't actually drop the metadata

= SQL Server keeps a cache of all the temporary objects that are used
through a stored procedure and then it reuses the metadata for those

objects

]
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-> One of the steps in the query optimization process is to
convert non-sargable predicates to sargable predicates

-> Pay attention to NULLS

=> S(L Server 2016 enables the creation of emp
columnstore indexes that you can use to enab

y filtered
e batch mode

execution in the OLTP scenarios without main
columnstore indexes

‘enance costs on



-> The logical join ordering is determined by the order of ON
clauses

-> [f you have a query that uses more than one table always use
aliases for all tables



Resources
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https://segovoni.medium.com/sargable-predicates-and-null-values-in-sql-server-c43ec3d8b108
https://segovoni.medium.com/sql-server-query-mode-execution-and-columnstore-indexes-fa05152c0753
https://bit.ly/3Hmcyuf
http://dataeducation.com/thinking-big-adventure
https://bit.ly/3WBxPt3
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