
T-SQL performance
Tips & Tricks

Slide and demos: https://bit.ly/3WBxPt3

https://bit.ly/3WBxPt3

Sergio Govoni
Centro software

S.p.A

BLOG

segovoni.medium.com

GITHUB PROJECTS

github.com/segovoni

AGENDA

➔SARGable predicates
➔NULLs
➔Dynamic sorting

➔Query mode execution
➔ Join order
➔Temp table cache contention

SARGable
predicates

The definition of SARGable

Wikipedia (en.wikipedia.org/wiki/Sargable) defines SARGability in
this way:

In relational databases, a condition (or predicate) in a query is said to be
sargable if the DBMS engine can take advantage of an index to speed up the
execution of the query. The term is derived from a contraction of Search
ARGument ABLE

https://en.wikipedia.org/wiki/Sargable

The definition of SARGable

A query failing to be sargable is known as a non-sargable query
and typically has a negative effect on query time, so one of the
steps in query optimization is to convert them to be sargable. The
effect is similar to searching for a specific term in a book that has
no index, beginning at page one each time, instead of jumping to a
list of specific pages identified in an index

SARGable predicates

➔SARGable means that the predicate can be
evaluated/executed using a Seek

➔Predicates

<expression><operator><expression>

<column><operator><expression>

Demo

Query mode
processing

Row mode execution

➔Row mode execution is a query processing method used with
traditional RDBMS tables, where data is stored in row format

➔When a query is executed and accesses data in row store
tables, the execution tree operators and child operators read
each required row, across all the columns specified in the table
schema

Row mode execution

➔From each row that is read, SQL Server retrieves the columns
that are required for the result set, as referenced by a SELECT
statement, JOIN predicate, or filter predicate

https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver15#row-mode-execution

Row mode execution

Batch mode execution

➔Batch mode execution is a query processing method used to
process multiple rows together, query operators process data
more efficiently

➔Each column within a batch is stored as a vector in a separate
area of memory, so batch mode processing is vector-based

Batch mode execution

➔Batch mode processing operates on compressed data when
possible and eliminates the exchange operator used by row
mode execution. The result is better parallelism and faster
performance

https://docs.microsoft.com/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver15#batch-mode-execution

Batch mode execution

Columnstore and query mode execution

➔SQL Server 2012 introduced a new feature to accelerate
analytical workloads: columnstore indexes

➔SQL Server expanded the use cases and improved the
performance of columnstore indexes in each subsequent
release

➔SQL Server 2016 enables the creation of empty filtered
columnstore indexes

Columnstore and query mode execution

➔Up to SQL Server 2017 batch mode processing requires a
columnstore index to be enabled

➔Starting with SQL Server 2019 (15.x) and in Azure SQL
Database, batch mode execution no longer requires
columnstore indexes, the feature is called Batch mode on
rowstore!

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?WT.mc_id=DP-MVP-4029181&view=sql-server-ver15#batch-mode-on-rowstore

Demo

Join order

Join order

➔Query Optimizer must find the optimal sequence of joins
between the tables used in the query, it defines the join order

➔Finding the optimal join order is one of the most difficult
problems in query optimization and it has be done within the
available time

Join order

➔Does the Query Optimizer analyze all possible join orders?

➔No, it doesn’t! 

➔ It finds a balance between the optimization time and the
quality of the resulting plan

Supplier-Customer that have
joint activity

Now imagine, you want to
preserve customers who have
no orders…

Join order

Please, consider this query…

Query optimizer has detected a
contradiction…

Join order

Demo

Temp table cache
contention

Tempdb

➔ It stores
➔ User objects
➔ Work objects (worktable for Sort and Spool, etc.)
➔ Version Store (Row Versioning)

➔ It’s always recreated after SQL Server restart
➔ It uses simple recovery model
➔One tempdb for the entire instance = It’s a bottleneck by

design!

User objects in tempdb

➔Local temporary tables
➔ Prefix “#”, Scope limited to the local session
➔ Auto dropped after the session is closed

➔Global temporary tables
➔ Prefix “##”, Visible in all sessions
➔ Auto dropped after the session is closed

➔Table variables
➔Tables returned from the “Table Valued Functions”

Creating a temp table on tempdb means

➔Reading the SGAM page (2:1:3) to find an extent with free
space
➔ An exclusive latch is active during the update

➔Reading the PFS page (2:1:1) to find a free page within the
extent
➔ An exclusive latch is active during the update

➔A PAGELATCH_* wait type occurs
➔ Resources have the form 2:x:x
➔ 2:1:1, 2:1:2 and 2:1:3

Temp table cache contention

➔Temp table caching helped address metadata contention by
allowing us to reuse tables

➔Cache a temp table object
➔ When you delete that table SQL Server doesn’t actually drop the metadata
➔ SQL Server keeps a cache of all the temporary objects that are used

through a stored procedure and then it reuses the metadata for those
objects

Demo

Summary

➔One of the steps in the query optimization process is to
convert non-sargable predicates to sargable predicates
➔ Pay attention to NULLs

➔SQL Server 2016 enables the creation of empty filtered
columnstore indexes that you can use to enable batch mode
execution in the OLTP scenarios without maintenance costs on
columnstore indexes

Summary

➔The logical join ordering is determined by the order of ON
clauses

➔ If you have a query that uses more than one table always use
aliases for all tables

Resources
➔ Sargable predicates and NULLs in SQL Server

➔ https://segovoni.medium.com/sargable-predicates-and-null-values-in-sql-server-c43ec3d8b108
➔Query mode execution

➔ https://segovoni.medium.com/sql-server-query-mode-execution-and-columnstore-indexes-fa05152c0753
➔ https://bit.ly/3Hmcyuf

➔ Thinking Big (Adventure) by Adam Machanic
➔ http://dataeducation.com/thinking-big-adventure

➔ Session materials on GitHub
➔ https://bit.ly/3WBxPt3

https://segovoni.medium.com/sargable-predicates-and-null-values-in-sql-server-c43ec3d8b108
https://segovoni.medium.com/sql-server-query-mode-execution-and-columnstore-indexes-fa05152c0753
https://bit.ly/3Hmcyuf
http://dataeducation.com/thinking-big-adventure
https://bit.ly/3WBxPt3

THANK YOU

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4: AGENDA

	SARGable predicates
	Slide 5: 1
	Slide 6: The definition of SARGable
	Slide 7: The definition of SARGable
	Slide 8: SARGable predicates
	Slide 9: 1

	Query mode processing
	Slide 10: 2
	Slide 11: Row mode execution
	Slide 12: Row mode execution
	Slide 13: Row mode execution
	Slide 14: Batch mode execution
	Slide 15: Batch mode execution
	Slide 16: Batch mode execution
	Slide 17: Columnstore and query mode execution
	Slide 18: Columnstore and query mode execution
	Slide 19: 2

	Join order
	Slide 20: 3
	Slide 21: Join order
	Slide 22: Join order
	Slide 23: Join order
	Slide 24: Join order
	Slide 25: 3

	Temp table cache contention
	Slide 26: 4
	Slide 27: Tempdb
	Slide 28: User objects in tempdb
	Slide 29: Creating a temp table on tempdb means
	Slide 30: Temp table cache contention
	Slide 32: 4

	The end
	Slide 37: Summary
	Slide 38: Summary
	Slide 39: Resources
	Slide 43

