

http://www.p-soft.biz/
http://www.firebirdsql.it/
https://www.linkedin.com/in/fcodebue/
https://www.linkedin.com/in/fcodebue/
mailto:f.codebue@p-soft.biz

Roadmap

10. New database object - Constants

Bug fixes

Bug fixes

Firebird version Close Open

5.0 beta 1 240 1

5.0 beta 2 37 3

total 277 4

New features

ODS will be 13.1

Remember
● backup with old gbak version
● Restore with new gbak version

ODS 13.1

● Parallel execution is supported for both auto- and manual

sweep
● decreasing the total operation time
● By default, parallel execution is not enabled.

Parallel (multi-threaded) operations

There are two ways to enable parallelism in user
attachment:

● set number of parallel workers in DPB using new tag
isc_dpb_parallel_workers,

● set default number of parallel workers using new setting
ParallelWorkers in firebird.conf.

Parallel (multi-threaded) operations

● New firebird.conf setting (Default value is 1)

ParallelWorkers - set default number of parallel workers that
used by user attachments.
● Could be overriden by attachment using tag

isc_dpb_parallel_workers in DPB

● MaxParallelWorkers - limit number of simultaneously used
workers for the given database and Firebird process.

Parallel (multi-threaded) operations

SWEEP
● For gfix utility there is new command-line switch

-parallel that allows to set number of parallel

workers for the sweep task.

gfix -sweep -parallel 4 <database>

will run sweep on given database and ask engine to use 4
workers. gfix uses DPB tag isc_dpb_parallel_workers
when attaches to <database>

Parallel (multi-threaded) operations

GBAK

● A new command-line switch has been added to gbak:

-PAR[ALLEL] <N>

● It defines how many parallel workers will be used for the
requested task.

gbak -b -par 4 -user <username> -pass <password> <dbname> <backupname>

gbak -r -par 4 -user <username> -pass <password> <backupname> <dbname>

Parallel (multi-threaded) operations

● allows to index only a subset of table rows

● defined by the search condition specified during index creation.

CREATE [UNIQUE] [{ASC[ENDING] | DESC[ENDING]}]
INDEX <index_name> ON <table_name>

{ (<column_list>) | COMPUTED [BY]
(<value_expression>) }

WHERE <search_condition>

Support for partial indices

Examples:

CREATE INDEX IT1_COL ON T1 (COL) WHERE COL < 100;
SELECT * FROM T1 WHERE COL < 100;
-- PLAN (T1 INDEX (IT1_COL))

CREATE INDEX IT1_COL2 ON T1 (COL) WHERE COL IS NOT NULL;
SELECT * FROM T1 WHERE COL > 100;
PLAN (T1 INDEX IT1_COL2)

CREATE INDEX IT1_COL3 ON T1 (COL) WHERE COL = 1 OR COL = 2;
SELECT * FROM T1 WHERE COL = 2;
PLAN (T1 INDEX IT1_COL3)

Support for partial indices

● allows to index only a subset of table rows

● defined by the search condition specified during index creation.

CREATE [UNIQUE] [{ASC[ENDING] | DESC[ENDING]}]
INDEX <index_name> ON <table_name>

{ (<column_list>) | COMPUTED [BY]
(<value_expression>) }

WHERE <search_condition>

Support for partial indices

RDB$PROFILER package
● allows users to measure performance cost of SQL and PSQL
● a system package in the engine passing data to a profiler plugin

collecting statistics of
● how many times each line was executed along with its minimum,

maximum and accumulated execution times (with ns precision)
● open and fetch statistics of implicit and explicit SQL

PSQL and SQL profiler

COLLECT DATA
● a user must first start a profile session with

RDB$PROFILER.START_SESSION
● function returns a profile session ID which is later stored in the

profiler snapshot tables to be queried and analyzed by the user

● A profiler session may be local (same attachment) or remote

(another attachment).

PSQL and SQL profiler

● It makes the engine skip records locked by other transactions
instead of wait on them or raise conflict errors

SKIP LOCKED clause

SELECT
[FIRST ...]
[SKIP ...]
FROM <sometable>
[WHERE ...]
[PLAN ...]
[ORDER BY ...]
[{ ROWS ... } | {OFFSET ...} | {FETCH ...}]
[FOR UPDATE [OF ...]]
[WITH LOCK [SKIP LOCKED]]

UPDATE <sometable>
SET ...
[WHERE ...]
[PLAN ...]
[ORDER BY ...]
[ROWS ...]
[SKIP LOCKED]
[RETURNING ...]

DELETE FROM <sometable>
[WHERE ...]
[PLAN ...]
[ORDER BY ...]
[ROWS ...]
[SKIP LOCKED]
[RETURNING ...]

● A denser compression of shorter-than-declared strings and
sets of subsequent NULL

● Starting with ODS 13.1
● reducing the storage overhead
● This improves compression for long VARCHAR fields

(especially UTF8 encoded) that are filled only partially

Optimize the record-level RLE algorithm

● allows to upgrade the existing database to the newest ODS
version without backup/restore

● belongs to the same major ODS version
● must be done manually
● It requires exclusive access to the database or error is thrown
● USE_GFIX_UTILITY system privilege is required
● Upgrade is transactional, all changes are reverted if any error

Inline minor ODS upgrade

gfix command
● a user must first start a profile session with
●

gfix -up[grade] <database>

-user <username> -pass <password>
●

●

●

Inline minor ODS upgrade

● Currently, DML RETURNING only supports singleton
inserts/updates/deletes

● This restriction be relaxed so that the following statements
can return multiple rows:

INSERT ... SELECT ...

Searched UPDATE

Searched DELETE

MERGE

UPDATE OR INSERT

Support multiple rows for DML RETURNING

Avoid data retrieval if the WHERE clause always evaluates to
FALSE

● In query like this

SELECT * FROM SOME_TABLE WHERE 1 = 0
● It is obviously that condition in WHERE clause is always FALSE,

but FB will read all records from SOME_TABLE without any
benefits

●

● Imagine into a recursive CTE (Common Table Expression)
●

Avoid data retrieval if the WHERE ...

● Regular operator || with BLOB arguments creates
temporary BLOB per every pair of args with BLOB.

● This could lead to the excessive memory consumption
and growth of database file.

● The BLOB_APPEND function is designed to concatenate
BLOBs without creating intermediate BLOBs.

● Available in: DSQL, PSQL.
BLOB_APPEND(<blob> [, <value1>, ... <valueN]>

BLOB_APPEND

Function NEW

RDB$BLOB_UTIL.NEW is used to create a new BLOB. It
returns a handle (an integer bound to the transaction) that
should be used with the others functions of the package.

Input

SEGMENTED type BOOLEAN NOT NULL

TEMP_STORAGE type BOOLEAN NOT NULL

Return type: INTEGER NOT NULL

BLOB.NEW

RDB$BLOB_UTIL.OPEN_BLOB is used to open an
existing BLOB for read. It returns a handle that should be
used with the others functions of the package.

Input parameter:

BLOB type BLOB NOT NULL

Return type: INTEGER NOT NULL.

OPEN_BLOB

RDB$BLOB_UTIL.APPEND is used to append chunks of
data to a BLOB handle created with
RDB$BLOB_UTIL.NEW.

Input parameters:

HANDLE type INTEGER NOT NULL

DATA type VARBINARY(32767) NOT NULL

BLOB_APPEND

RDB$BLOB_UTIL.READ, When is fully read returns
NULL.
● If LENGTH is passed with a positive number, it returns a

VARBINARY with its maximum length.
● If LENGTH is NULL it returns just a segment of the

BLOB with a maximum length of 32765.
Input parameters:

HANDLE type INTEGER NOT NULL

LENGTH type INTEGER

Return type: VARBINARY(32767).

BLOB_READ

RDB$BLOB_UTIL.SEEK is used to set the position for
the next READ. It returns the new position.
● MODE may be 0 (from the start), 1 (from current

position) or 2 (from end).
● When MODE is 2, OFFSET should be negative.

Input parameter:

HANDLE type INTEGER NOT NULL

MODE type INTEGER NOT NULL

OFFSET type INTEGER NOT NULL

Return type: INTEGER NOT NULL.

BLOB_SEEK

RDB$BLOB_UTIL.CANCEL is used to release a BLOB
handle opened with RDB$BLOB_UTIL.OPEN_BLOB or
discard one created with RDB$BLOB_UTIL.NEW.

Input parameter:

HANDLE type INTEGER NOT NULL

BLOB CANCEL

RDB$BLOB_UTIL.MAKE_BLOB is used to create a
BLOB from a BLOB handle created with NEW followed by
its content added with APPEND. After MAKE_BLOB is
called the handle is destroyed and should not be used
with the others functions.

Input parameter:

HANDLE type INTEGER NOT NULL

Return type: BLOB NOT NULL.

MAKE_BLOB

● The engine maintains a per-attachment cache of compiled SQL
statements.

● By default, caching is enabled, the caching threshold is defined
by the MaxStatementCacheSize parameter in firebird.conf.

● It can be disabled by setting MaxStatementCacheSize to zero.
● The cache is maintained automatically; cached statements are

invalidated when required (usually when some DDL statement is
executed).

Compiled statement cache

Returns the UNICODE character with the specified code
point.

UNICODE_CHAR(<number>)

Notes: Argument to UNICODE_CHAR must be a valid
UNICODE code point and not in the range of high/low
surrogates (0xD800 to 0xDFFF). Otherwise it throws an
error.

Example:
select unicode_char(x) from y;

UNICODE_CHAR

Returns the UNICODE code point of the first character of
the specified string.

UNICODE_VAL(<string>)

Notes: Returns 0 if the string is empty.

Example:
select unicode_val(x) from y;

UNICODE_VAL

cascade_replication
● New parameter that specifies whether changes applied to the

replica database will be also subject of further replication (if any
configured).

● Default value is false (cascading is disabled).
●

● Allow macros in replication.conf
● Configuration file macros are now also supported in
replication.conf

Replication Configuration

● Improve performance of STARTING WITH with insensitive
collations

● SIMILAR TO should use index when pattern starts with
non-wildcard character (as LIKE does)

● Cost-based choice between hash/merge joins

OTHERS….

● Support for WHEN NOT MATCHED BY SOURCE for
MERGE statement

● Network support for bi-directional cursors
● Allow sub-routines to access variables/parameters defined

at the outer/parent level
● WireCryptPlugin, RemotePipeName,

TcpLoopbackFastPath

OTHERS….

	Diapositiva 1
	Diapositiva 2
	AGENDA
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43

