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10. New database object - Constants



Bug fixes



Bug fixes

Firebird version Close Open

5.0 beta 1 240 1

5.0 beta 2 37 3

total 277 4



New features



ODS will be 13.1

Remember 
● backup with old gbak version 
● Restore with new gbak version

ODS 13.1



● Parallel execution is supported for both auto- and manual

sweep
● decreasing the total operation time
● By default, parallel execution is not enabled. 

Parallel (multi-threaded) operations



There are two ways to enable parallelism in user 
attachment:

● set number of parallel workers in DPB using new tag 
isc_dpb_parallel_workers,

● set default number of parallel workers using new setting 
ParallelWorkers in firebird.conf.

Parallel (multi-threaded) operations



● New firebird.conf setting (Default value is 1 )

ParallelWorkers - set default number of parallel workers that 
used by user attachments. 
● Could be overriden by attachment using tag 

isc_dpb_parallel_workers in DPB

● MaxParallelWorkers - limit number of simultaneously used 
workers for the given database and Firebird process.

Parallel (multi-threaded) operations



SWEEP
● For gfix utility there is new command-line switch 

-parallel that allows to set number of parallel 

workers for the sweep task. 

  

gfix -sweep -parallel 4 <database>

will run sweep on given database and ask engine to use 4 
workers. gfix uses DPB tag isc_dpb_parallel_workers 
when attaches to <database>

Parallel (multi-threaded) operations



GBAK

● A new command-line switch has been added to gbak: 

-PAR[ALLEL] <N>

● It defines how many parallel workers will be used for the 
requested task.

gbak -b -par 4 -user <username> -pass <password> <dbname> <backupname>

gbak -r -par 4 -user <username> -pass <password> <backupname> <dbname>

Parallel (multi-threaded) operations



● allows to index only a subset of table rows 

● defined by the search condition specified during index creation.

CREATE [UNIQUE] [{ASC[ENDING] | DESC[ENDING]}] 
INDEX <index_name> ON <table_name>

{ (<column_list>) | COMPUTED [BY] 
( <value_expression> ) }

WHERE <search_condition>

Support for partial indices



Examples:

CREATE INDEX IT1_COL ON T1 (COL) WHERE COL < 100;
SELECT * FROM T1 WHERE COL < 100;
-- PLAN (T1 INDEX (IT1_COL))

CREATE INDEX IT1_COL2 ON T1 (COL) WHERE COL IS NOT NULL;
SELECT * FROM T1 WHERE COL > 100;
PLAN (T1 INDEX IT1_COL2)

CREATE INDEX IT1_COL3 ON T1 (COL) WHERE COL = 1 OR COL = 2;
SELECT * FROM T1 WHERE COL = 2;
PLAN (T1 INDEX IT1_COL3)

Support for partial indices



● allows to index only a subset of table rows 

● defined by the search condition specified during index creation.

CREATE [UNIQUE] [{ASC[ENDING] | DESC[ENDING]}] 
INDEX <index_name> ON <table_name>

{ (<column_list>) | COMPUTED [BY] 
( <value_expression> ) }

WHERE <search_condition>

Support for partial indices



RDB$PROFILER package
● allows users to measure performance cost of SQL and PSQL 
● a system package in the engine passing data to a profiler plugin

collecting statistics of 
● how many times each line was executed along with its minimum, 

maximum and accumulated execution times (with ns precision)
● open and fetch statistics of implicit and explicit SQL

PSQL and SQL profiler



COLLECT DATA
● a user must first start a profile session with 

RDB$PROFILER.START_SESSION
● function returns a profile session ID which is later stored in the 

profiler snapshot tables to be queried and analyzed by the user

● A profiler session may be local (same attachment) or remote

(another attachment).

PSQL and SQL profiler



● It makes the engine skip records locked by other transactions 
instead of wait on them or raise conflict errors

SKIP LOCKED clause

SELECT
[FIRST ...]
[SKIP ...]
FROM <sometable>
[WHERE ...]
[PLAN ...]
[ORDER BY ...]
[{ ROWS ... } | {OFFSET ...} | {FETCH ...}]
[FOR UPDATE [OF ...]]
[WITH LOCK [SKIP LOCKED]]

UPDATE <sometable>
SET ...
[WHERE ...]
[PLAN ...]
[ORDER BY ...]
[ROWS ...]
[SKIP LOCKED]
[RETURNING ...]

DELETE FROM <sometable>
[WHERE ...]
[PLAN ...]
[ORDER BY ...]
[ROWS ...]
[SKIP LOCKED]
[RETURNING ...]



● A denser compression of  shorter-than-declared strings and 
sets of subsequent NULL

● Starting with ODS 13.1
● reducing the storage overhead
● This improves compression for long VARCHAR fields 

(especially UTF8 encoded) that are filled only partially

Optimize the record-level RLE algorithm



● allows to upgrade the existing database to the newest ODS 
version without backup/restore

● belongs to the same major ODS version
● must be done manually
● It requires exclusive access to the database or error is thrown 
● USE_GFIX_UTILITY system privilege is required
● Upgrade is transactional, all changes are reverted if any error

Inline minor ODS upgrade



gfix command
● a user must first start a profile session with 
●

gfix -up[grade] <database> 

-user <username> -pass <password>
●

●

●

Inline minor ODS upgrade



● Currently, DML RETURNING only supports singleton 
inserts/updates/deletes

● This restriction be relaxed so that the following statements 
can return multiple rows:

INSERT ... SELECT ...

Searched UPDATE

Searched DELETE

MERGE

UPDATE OR INSERT

Support multiple rows for DML RETURNING



Avoid data retrieval if the WHERE clause always evaluates to 
FALSE

● In query like this

SELECT * FROM SOME_TABLE WHERE 1 = 0
● It is obviously that condition in WHERE clause is always FALSE, 

but FB will read all records from SOME_TABLE without any 
benefits

●

● Imagine into a recursive CTE (Common Table Expression)
●

Avoid data retrieval if the WHERE ...



● Regular operator || with BLOB arguments creates 
temporary BLOB per every pair of args with BLOB. 

● This could lead to the excessive memory consumption 
and growth of database file. 

● The BLOB_APPEND function is designed to concatenate 
BLOBs without creating intermediate BLOBs.

● Available in: DSQL, PSQL.
BLOB_APPEND(<blob> [, <value1>, ... <valueN]>

BLOB_APPEND



Function NEW

RDB$BLOB_UTIL.NEW is used to create a new BLOB. It 
returns a handle (an integer bound to the transaction) that 
should be used with the others functions of the package.

Input

SEGMENTED type BOOLEAN NOT NULL

TEMP_STORAGE type BOOLEAN NOT NULL

Return type: INTEGER NOT NULL

BLOB.NEW



RDB$BLOB_UTIL.OPEN_BLOB is used to open an 
existing BLOB for read. It returns a handle that should be 
used with the others functions of the package.

Input parameter:

BLOB type BLOB NOT NULL

Return type: INTEGER NOT NULL.

OPEN_BLOB



RDB$BLOB_UTIL.APPEND is used to append chunks of 
data to a BLOB handle created with 
RDB$BLOB_UTIL.NEW.

Input parameters:

HANDLE type INTEGER NOT NULL

DATA type VARBINARY(32767) NOT NULL

BLOB_APPEND



RDB$BLOB_UTIL.READ, When is fully read returns 
NULL.
● If LENGTH is passed with a positive number, it returns a 

VARBINARY with its maximum length.
● If LENGTH is NULL it returns just a segment of the 

BLOB with a maximum length of 32765.
Input parameters:

HANDLE type INTEGER NOT NULL

LENGTH type INTEGER

Return type: VARBINARY(32767).

BLOB_READ



RDB$BLOB_UTIL.SEEK is used to set the position for 
the next READ. It returns the new position.
● MODE may be 0 (from the start), 1 (from current 

position) or 2 (from end).
● When MODE is 2, OFFSET should be negative.

Input parameter:

HANDLE type INTEGER NOT NULL

MODE type INTEGER NOT NULL

OFFSET type INTEGER NOT NULL

Return type: INTEGER NOT NULL.

BLOB_SEEK



RDB$BLOB_UTIL.CANCEL is used to release a BLOB 
handle opened with RDB$BLOB_UTIL.OPEN_BLOB or 
discard one created with RDB$BLOB_UTIL.NEW.

Input parameter:

HANDLE type INTEGER NOT NULL

BLOB CANCEL



RDB$BLOB_UTIL.MAKE_BLOB is used to create a 
BLOB from a BLOB handle created with NEW followed by 
its content added with APPEND. After MAKE_BLOB is 
called the handle is destroyed and should not be used 
with the others functions.

Input parameter:

HANDLE type INTEGER NOT NULL

Return type: BLOB NOT NULL.

MAKE_BLOB



● The engine maintains a per-attachment cache of compiled SQL 
statements. 

● By default, caching is enabled, the caching threshold is defined 
by the MaxStatementCacheSize parameter in firebird.conf. 

● It can be disabled by setting MaxStatementCacheSize to zero.
● The cache is maintained automatically; cached statements are 

invalidated when required (usually when some DDL statement is 
executed).

Compiled statement cache



Returns the UNICODE character with the specified code 
point.

UNICODE_CHAR( <number> )

Notes:  Argument to UNICODE_CHAR must be a valid 
UNICODE code point and not in the range of  high/low 
surrogates (0xD800 to 0xDFFF). Otherwise it throws an 
error.

Example:
select unicode_char(x) from y;

UNICODE_CHAR



Returns the UNICODE code point of the first character of 
the specified string.

UNICODE_VAL( <string> )

Notes:  Returns 0 if the string is empty.

Example:
select unicode_val(x) from y;

UNICODE_VAL



cascade_replication
● New parameter that specifies whether changes applied to the 

replica database will be also subject of further replication (if any 
configured). 

● Default value is false (cascading is disabled).
●

● Allow macros in replication.conf
● Configuration file macros are now also supported in 
replication.conf

Replication Configuration



● Improve performance of STARTING WITH with insensitive 
collations

● SIMILAR TO should use index when pattern starts with 
non-wildcard character (as LIKE does)

● Cost-based choice between hash/merge joins

OTHERS….



● Support for WHEN NOT MATCHED BY SOURCE for 
MERGE statement

● Network support for bi-directional cursors
● Allow sub-routines to access variables/parameters defined 

at the outer/parent level
● WireCryptPlugin, RemotePipeName, 

TcpLoopbackFastPath

OTHERS….
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