
DELPHI AND DESIGN PATTERNS

Primož Gabrijelčič

About me

• Primož Gabrijelčič
• http://primoz.gabrijelcic.org

• programmer, MVP, writer, blogger, consultant, speaker

• Blog http://thedelphigeek.com

• Twitter @thedelphigeek

• Skype gabr42

• LinkedIn gabr42

• GitHub gabr42

• SO gabr

Books

http://tiny.cc/

pg-dpd
http://tiny.cc/

pg-dhp
http://tiny.cc/

pg-ppotl

DESIGN PATTERNS

Design patterns
• Pattern = template for a solution

• Pattern = common vocabulary

• Pattern ≠ recipe

• architectural patterns > design patterns > idioms

• design patterns ≠ design principles (SOLID, DRY …)

Critique
• “Classical” design patterns =

“Design Patterns: Elements of Reusable Object-Oriented Software”
• Very specific to object-oriented programming

• Somewhat specific to C++

• Better solutions exist for some of them

• Don’t use design patterns to architect the software
• Use them to solve specific problems

• Design patterns are a tool, not a goal!

Delphi idioms
• Object creation and destruction

• Assign and AssignTo

• [Attributes]

• Iterating with for..in

• Helpers

• Actions

• And more …

obj := TMyObject.Create;
try

…
finally

FreeAndNil(obj);
end

Architectural patterns
• Model-View-Controller, …

• Domain driven design

• Multilayered architecture

• Data warehouse

• …

Design principles
• SOLID Single responsibility, Open-closed, Liskov substitution,

Interface segregation, Dependency inversion

• DRY Don’t repeat yourself

• KISS Keep it simple stupid

• YAGNI You ain’t gonna need it

• SoC Separation of concerns

• NIH/PFE Not invented here / Proudly found elsewhere

Design pattern categories
• Creational patterns: delegation

• Creating objects and groups of objects

• Structural patterns: aggregation
• Define ways to compose objects

• Behavioral patterns: communication
• Define responsibilities between objects

• Concurrency patterns: cooperation
• Make multiple components work together

CREATIONAL PATTERNS

Creational patterns
• Abstract factory

• Builder

• Dependency injection

• Factory method

• Lazy initialization

• Multiton

• Object pool

• Prototype pattern

• Resource acquisition is initialization
(RAII)

• Singleton

Not covered in the book. Covered in more detail in this seminar.

Singleton
A country should always have one and only one president/queen/king/
head of state/… at any time. She or he is a singleton.

• Don’t use (true) singletons!
• They cause problems with unit testing

• They are not configurable

• Better approaches
• Global factory

• Global variable

• Injection

Dependency injection
RC car with interchangeable battery pack. User can insert (inject)
single-use batteries, recharchable pack, or even a custom solution
running on hamsters.

• IOC, containers
• “Dependency injection in Delphi, Nick Hodges”

• http://codingindelphi.com/

• Constructor injection

• Property injection

• Parameter injection

http://codingindelphi.com/

Lazy initialization
Whenever I go somewhere with a car, I have to take into account
a small possibility that the car will not start. If that happens,
I call my mechanic. That is lazy initialization.

• Simple in a single-threaded program

• A bit trickier in a multi-threaded program

• Spring.Lazy<T>

if not assigned(lazyObject) then
lazyObject := TLazyObject.Create;

Use(lazyObject);

Object pool
If you have to write a letter, you need a pen. If there is no pen
in the house, you will go to the shop and buy one.
Acquiring a new pen is therefore a costly operation.
Because of that, you don't throw a pen away once you're finished
with the letter. You rather store it in a drawer.

• Database connection pool

• HTTP connection pool

• Thread pool

Factory method
Imagine a kid making cookies out of dough. He can do nothing until
he invokes a factory method and says “Give me a cutter”.
You provide him with a cookie cutter and he can finally start
making cookies. In what shape? That’s your call.

• Factory method = TFunc, …

Abstract factory
If a factory method is a kid with a cookie cutter, an abstract factory is a
kitchen chef. Give her a set of cooking tools and she'll make you a great
dish. Give her access to baking set and she'll make you a perfect pie.

• A factory for factories
• Example: A factory for factories that create GUI elements

• One abstract factory creates VCL factories, another FMX factories

• Highly specialized and not widely useful

Prototype
Life is based on cellular division, a process in which one cell divides
into two identical copies of itself.

• Cloning records
• Can be a simple assignment

• Shallow cloning vs. deep cloning

• Assign and AssignTo

Builder
Builder pattern is similar to automated coffee/tea machine which
always follows the same build process: put a cup on the tray,
insert proper beverage into the system, flow hot water through
the system into the cup, beep at the end.
While the build process is always the same, the end result depends
on concrete implementation of the step two.

• Object creation controlled through the code

• XML Builder, SQL Query builder …

STRUCTURAL PATTERNS

Structural patterns
• Adapter

• Bridge pattern

• Composite

• Decorator

• Extension object

• Facade

• Flyweight

• Front controller

• Marker

• Module

• Proxy

• Twin

Not covered in the book. Covered in more detail in this seminar.

Composite
Imagine an irrigation system. At some point it is connected to a
water supply. The irrigation system can then split into multiple
branches which end in different kinds of water dispensers.
We don't care much about that complicated structure as all
components of the system implement the same interface - you put
the water in and it flows out on the other end.

• A structure of classes is used to implement a hierarchical data
• All classes implement same operations

• Modern solution for the same problem: interfaces

Flyweight
In old times libraries stored book indexes on index cards (small pieces of
paper). They had different indexes - by title, by author, by topic ... and
in every index the index card for a book contained only basic info
(title, author) and location in the library (a pointer to the shared
data object - the book).

• Reduce memory usage by keeping references (pointers) to (shared) data

• Database normalization

• String interning

• Shared data = interface; share the interface

Marker interface
Marker is a label attached to a product. It is a note on a car dashboard
saying Change oil at 150.000 km, or a message on a sandwich
in a communal kitchen stating This belongs to me!

• Attributes are in most cases a better solution

Bridge
In modern cars most controls (steering wheel, throttle, brake ...)
don't access hardware directly. Instead, signals from controls go to
a computer which then controls electrical motors that drive
the actual hardware. With this approach we can change
the implementation (car parts under the hook) without redesigning
the interior of the car.

• Separate abstraction (interface) from implementation

Adapter
A cable with USB type A connector on one side and USB micro connector
on the other is an adapter which allows us to plug a mobile phone into
a personal computer.
Another kind of adapter allows you to plug a device with German
power plug into UK wall socket, or a device that uses 110 V power
into socket that provides 230 V.

• Adapter pattern should not be used when designing code
• Use bridge pattern instead

Proxy
When you are accessing web from inside a business environment,
the traffic usually flows through a http filtering and caching proxy.
This software catches all http requests generated in browsers and
other applications and then decides whether it will forward request
to the target site, return the result from the cache, or deny the request
if the site is on the blocked list.

• Protection proxy

• Remoting proxy

• Lazy initialization proxy

• Mocking proxy

• Logging proxy

• Locking/serialization proxy

Decorator
A holiday tree by itself doesn't do much. It stands in one place and looks
nice. We can, however, enhance its value by adding decoration, such as
colorful lights. This decoration doesn't change the original interface
of the tree, it just improves it. Even more, we can apply the same
decoration to many different kinds of trees, not just a specific sort.

• Enhance functionality to existing interface

• Helpers

Facade
When you ask your smart device Hey xxx, will it rain today? you are
accessing facade for an incredibly complex system. Your words are first
converted to a text, then another subsystem tries to understand your
question, the third one provides information about your location,
the fourth gives a weather forecast and at the end a text-to-speech
module reads the answer to you.

• Simplify interaction with a complex system

Bridge/Adapter/Proxy/Decorator/Facade

• Bridge, adapter, proxy, and decorator wrap one class. Facade wraps multiple
classes.

• Bridge and adapter provide a different interface. Proxy provides the same
interface. Decorator provides an enhanced interface. Facade provides a
simplified interface.

• With bridge, we define both the abstract interface and the implementation.
With adapter, the implementation exists in advance.

BEHAVIORAL PATTERNS

Behavioral patterns
• Blackboard

• Chain of responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Null object

• Observer (Publish/Subscribe)

• Servant

• Specification

• State

• Strategy

• Template method

• Visitor

Not covered in the book. Covered in more detail in this seminar.

Null object
Most modern operating systems know the concept of a null device.
For example, NUL on Windows and /dev/null on Unix and similar
systems are devices which are empty if we read from them.
They will also happily store any file you copy onto them, no matter what
the size. You'll never be able to retrieve that file, though, as the
null device will stay empty no matter what you do with it.

• Replace ‘if assigned’ code with ‘do-nothing’ objects/interfaces
• Null object ≠ nullable object

Template method
A recipe in a cookbook represents a template method. It may say
something like take three cups of flour (without specifying where exactly
you should get this flour from), put into the oven (without specifying
exactly which of your baking tins you should use and what specific mark
of oven that should be), serve when cold (without providing any detail
about serving plates and table setting) and so on ...

• An algorithm with important parts missing

• Modern approach: use interfaces instead of subclassing

Command
When you send a package through a delivery agency, you are using
a command pattern. A package (command) is delivered to the receiver
by a delivery agency (issuer) and the whole action was triggered
by the client (you).

• Wrapping UI actions into objects

• TAction

State
Any vending machine follows the state pattern. The behavior of
a machine when the customer presses the buttons to select
the product depends on the current state. If the customer has
already paid for the product, the machine will deliver the merchandise.
Otherwise, it will only display the cost of the product.

• How to replace messy if..else ladder with an object structure

Quoted string recognizer

Iterator
If you browse through TV channels by clicking the next channel button
on a remote, you are using an iterator pattern.

• For..in

• Robust iterators

• Null iterators

Visitor
After you enter a city sightseeing bus, you have no longer control over
your transportation. The bus driver drives you from one attraction
to another and on each stop allows you to perform an action
(take some photos).

• Walks over a hierarchical structure and executes (user-provided) code on each
item

Observer
If you subscribe to a magazine, you don't go to the publisher every day
to check if new edition is ready. Rather, you wait until the publisher
sends you each issue.

• Also known as Publish-Subscribe

• Direct execution of the notification vs. messaging

• Optional granularity
• Usually indicates that the object is too complex (SRP!)

• Live Bindings
• TComponent.Observers

• Spring4D Multicast events
• Event<T>

Memento
A memento behaves the same as a save point in a computer game.
When you save your state in a game, a representation of your current
progress is saved. Later, you can restore the game from this
representation to the previous state.

• How separate state from an object

• Bookmark

CONCURRENCY PATTERNS

Concurrency patterns
• Active object

• Binding properties

• Blockchain pattern

• Compute kernel

• Double-checked locking

• Event-based asynchronous

• Future

• Guarded suspension

• Join

• Lock

• Lock striping

• Messaging

• Monitor object

• Optimistic locking

• Pipeline (Staged processing)

• Reactor

• Read-write lock

• Scheduler

• Thread pool

• Thread-specific storage

Not covered in the book. Covered in more detail in this seminar.

Locking
A lock corresponds to a latch on the inner side of a changing room door.
While locked, it prevents other users to access the changing room that is
already in use.

• Synchronize access to shared resources
• Not needed if all instances only read from a shared resource

• Can slow the program

• Can introduce problems (deadlocking)

• Critical sections

• TMonitor

Lock striping
Imagine the fitting rooms in a clothing store. They are not protected
with one master lock as that would prevent multiple customers from
trying out clothes at the same time. Rather, each room has its own lock.

• Locking on a more granular level

• Single bit locks

Double-checked locking
When you are changing lanes in a car, you check the traffic around you,
then turn on indicators, check the traffic again, and then change the lane.

• Faster access to code that is almost never used

• Shared object creation in a multi-threaded program
• Lazy initialization

Optimistic locking
In modern version control systems, such as SVN and git, you don’t
lock a file that you want to change. Rather, you modify the file,
commit a new version to the version control system, and hope that
nobody has modified the same lines of the same file in the meantime.

• Even faster initialization of a shared object
• Provided that we don’t care if we create the object twice

Readers-writer lock
A road is a resource that was designed for sharing. Multiple cars
are using it at the same time. When there's a need to modify the road
(paint new roadmarks, fix the pavement ...); however, they have to close
down the traffic so that the road is exclusively available to the
maintenance crew.

• Frequent reads, rare writes

• TMREWSync = TMultiReadExclusiveWriteSynchronizer
• Slow!

• Reentrant, upgradeable, write-biased

• Windows: Slim Reader/Writer
• Fast!

• Non-reentrant, not upgradeable, read-biased

Thread pool
A thread pool is like a taxi service. When you need to travel somewhere,
you call the dispatch and as soon as they have a taxi ready, they will
send it to pick you up.

• Faster startup time for background tasks

• Caching shared resources
• Database connections

• A variation of an object pool

• TTask.Run

Messaging
If you play chess on the Internet, you are not sharing a chessboard
with your partner. Instead of that, each of you has its own copy of
the chessboard and figures and you synchronize the state between
the two copies by sending messages (representing the piece moves)
to each other.

• Windows messaging

• Queue and Synchronize

• Custom solutions
• Example: threaded queue + polling

Future
In a kitchen, the chef asks her assistant to cut up few onions. While
the assistant peels, cuts and cries, the chef continues preparing
other meals. At a later time, when she needs to use the onion, it will
hopefully be already prepared and waiting.

• Executing functions in parallel

• TTask.Future<T>
• + TThread.Queue

Pipeline
A robotized assembly line builds product in stages. Each robot takes
partially finished product, makes some modifications and passes
the product to the next robot. This allows multiple robots to work
at the same time which speeds up the production.

• Simple way to parallelize processes that can be split into stages

Q&A

