
(almost) 68
ways to
optimize
Firebird

Fabio codebue
P-soft

P-Soft

www.p-soft.biz

www.firebirdsql.it

@fcodebue

linkedin.com/in/fcodebue

@delphiforce

f.codebue@p-soft.biz

http://www.p-soft.biz/
http://www.firebirdsql.it/
https://www.linkedin.com/in/fcodebue/
mailto:f.codebue@p-soft.biz

AGENDA
● Hardware optimization

● Firebird server optimization

● Programming optimization

● SQL optimization

● Windows Server optimization

● Linux optimization

● Virtual Server optimization

Hardware
optimization

Put database to SSD

● Put your database on SSD

● SSD drive provides much better random IO than

traditional drives.

● Random IO is critical for reading and

writing data distributed through

big database file - the majority of

database operations require

intensive parallel random IO.

● Use RAID 10

○ If you use RAID1 or RAID5, consider RAID10

○ RAID10 it is 15-25% faster.

RAID

● Use BBU

● If you are using RAID controller, check that it has

Backup Battery Unit (BBU) installed and operational

– some vendors do not provide BBU by default.

● Without BBU, the controller disables the cache, and

RAID works very slow, even slower than usual SATA

drives.

● Usually, you can check BBU status in the RAID

configuration tool.

Backup Battery Unit

● Set write cache to write-back

● If you are using RAID controller with installed BBU

(and server with UPS), check that its cache is set to

write-back (not write-through).

● «Write-back» enables write cache of the controller.

Write Cache

● Enable read cache

○ If you use RAID controller

check that it has enabled read cache

The page cache is the intermediate between the

"working" parts of the database and the disk.

Read Cache

● Check disk subsystem

○ Check your drives for bad blocks and other

hardware problems (including overheating).

○ Hardware problems can significantly decrease IO

performance and lead to database corruptions.

Low level check disk

● Use SuperClassic or Classic in Firebird

○ If you use Firebird 2.5 SuperServer with many

connections, try to use SuperClassic or Classic,

they can scale better by using all cores of CPU.

Firebird 2.5

● Use SuperServer 3.0

○ If you use Classic or SuperClassic in 2.5, consider

migration to Firebird 3.0 SuperServer

○ Now it can use multiple cores and combine it with

the advantages of the shared cache.

Firebird 3.x

FIREBIRD OPTIMIZATION

● Increase the size of page buffers cache (parameter

DefaultDBCachePages) from the default values.

● For 2.5 SuperServer we recommend 10000 pages,

● For 3.0 SuperServer – 50000 pages

● For Classic and SuperClassic – from 256 to 2048

pages.

However, don't set page buffers cache value too high – cache

synchronization has its cost, and the idea to put all database into

RAM by tuning this value will not work.

Increase page buffers cache

● Increase memory size for sort operations

● Increase the value of TempCacheLimit parameter

● It specifies the size of the cache of the temporary

space for sorting.

● Default values are too low
○ 8Mb for Classic and 64Mb for SuperServer

● Use at least
○ 64Mb for Classic

○ 1Gb for SuperServer and SuperClassic.

Memory and cache

● Set Forced Writes Off – ATTENTION!!!

● If you have intensive insert or update activity

● You can check it with HQbird MonLogger,

● If you have UPS and replication installed to protect

from hardware failures, consider to set Forced Writes

settings to OFF, it can increase speed of write

operations up to 3 times.

Forced Writes

http://ibsurgeon.it/

● Increase number of hash slots for

Classic/SuperClassic

○ Increase the value of LockHashSlots parameter

for Classic and SuperClassic from the default

1009 to some big prime number (30011, for

example)

○ It will decrease queues in the internal locking

mechanism

Hash slots

Firebird 2.5

● Use CPU Affinity for Super Server
○ Set CPUAffinity parameter to the value equal to

the number of databases in use:
○ SuperServer in 2.5 can use different CPU cores to

process requests for the certain databases.
○ CpuAffinityMask = n

The value is taken from a bit map in which each bit represents a CPU.
Thus, to use only the first processor, the value is 1.
To use both CPU 1 and CPU 2, the value is 3.
To use CPU 2 and CPU 3, the value is 6.

CPU Affinity

● Use fast drive for temp space

○ Set the first part of TempDirectory parameter in

firebird.conf to the fast disk – SSD or RAM drive.

○ It will decrease the time of big sortings – for

example when the database is being restored.

TempDirectories = c:\temp;d:\temp

Temp space drive

● Store backups on another drive

○ Store database backups on the dedicated

physical drive (RAID).

○ It will separate read and write IO during

backup, and increase backup speed and

decrease load for the main drive.

○ It is especially important when backups are taken

while users are working with the database.

Backup location

● Temporary files are stored in the following locations:
○ Windows C:\ProgramData\firebird,

○ Linux /tmp/firebird

● Normally these files should be cleaned

automatically, however, sometimes it does not

happen (for example, in the case of server reboot).

● Check these folders periodically and clean old files –

there could be many GBs of outdated files fb_NNN

Clean Firebird temporary files

● FileSystemCacheThreshold.

If FileSystemCacheThreshold is less than

DefaultDBCachePages or page buffers, the operating

system's file cache will be not used, which can lead to

performance problems.

In 99% of cases, it is better to have file cache enabled.

To ensure this, always set parameters according to the
following rule: DefaultDBCachePages = X

FileSystemCacheThreshold = X+ N, N>1

FileSystemCacheThreshold

● Every connection to the Firebird database

establishes the connection to the security database

● Increase page buffers for securityN.fdb (empirical

optimum is 256 buffers)

● Move security3.fdb to the fast drive (it is a

standard feature in Firebird 3, in 2.5 it will require

reinstallation)

● Then, you can set Forced Writes OFF f

Security DB

● FB 3.x Surperclassic: better performance
To try SuperClassicSet in firebird.conf

ServerMode=SuperClassic

DefaultDbCachePages=1024

gfix –buff 0

Restart Firebird

To revert to SuperServerSet in firebird.conf

ServerMode=SuperServer

DefaultDbCachePages=N # N*page size*databases_count < 25% RAM

FileSystemCacheThreshold = N+1

gfix –buff 0

Restart Firebird

FB 3.x superclassic

● Databases more than 100Gb in 95% cases, it is

better to have the highest available page size, in

order to:
○ Decrease depth of indices

○ Increase utilization of RAM

○ Decrease number of system pages

● To increase the page size, the database should be back up with

gbak tool and then restore with parameter –page

gbak –c –page 16384

Big database

● The flag no_reserve makes Firebird do not reserve

free space (30%) on data pages for the possible

record versions

● This flag allows the data to be stored in a more

compact way (and size of the database is less too)

● DB with no_reserve flag operations are slower.

● If your db is not read-only, remove no_reserve flag.

Check: gstat –h database

Disable: gfix -use reserve database

no_reserve flag

● Lock table is the mechanism of Firebird, which is used

to synchronize access to the internal engine objects.

● Can grow automatically, but its increase is a slow

● Lock table can only grow, starting from the initial size

● To prevent multiple rounds of increasing lock table,

observe and set in firebird.conf

LockMemSize=99999999
LockMemSize on high load systems with ~1000 users is usually
below 200Mb.

lock table

● If

no_reserve flag

● If

no_reserve flag

● If

no_reserve flag

Programming
optimization

● Deactivate indices for bulk inserts

○ If you insert or update many records (more than

25% of the table), deactivate indices for the table

where records are inserted and reactivate them

after insert or update.

○ The index rebuild operation can be faster than

many updates of the index.

Bulk insert

● Use Global Temporary Tables for fast inserts

○ To speed up inserts and updates, use Global

Temporary Tables for bulk inserts of the large

recordsets,

○ and then transfer records into the permanent

table.

GTT TABLE

Massive
insert

process

GTT for fast insert

● Avoid unnecessary indices

○ Use fewer indices for tables with intensive inserts

and updates.

○ Each index adds significant overhead for insert,

update, delete, and garbage collection operations

○ There could be 3-4 additional page reads and

writes when the single record is being inserted,

updated, deleted, cleaned for each index.

No more indexes

● Replace UDFs with embedded functions calls

● Many embedded functions were added in the recent

versions of Firebird, which offer functionality

previously available only in UDF libraries.

● Replace such functions where possible, since

embedded functions work up to 3 times faster than

UDFs.

● Deprecated in Firebird 4.x

Don’t use UDF

● Use read-only transactions for read operations

○ Use read-only transactions for operations which

do not change record (i.e., SELECTs) with

isolation mode = read committed.

○ Such transactions do not retain record versions

from the garbage collection, and can run

indefinitely

○ They do not affect database performance.

Read Transactions

● Use short write transactions and get rid of ALL long-

running (for operations INSERT,UPDATE, DELETE).

● The shorter writeable transaction is, the better.

The short transactions retain proportionally less number of record

versions from garbage collection than long-running. Unfortunately,

even the single long-running transaction (from the development tool

left open, for example) can screw the good effect of all other short

writeable transaction.

That's why you need to monitor long-running transaction and fix the

appropriate places in the source code.

Write Transactions

● Avoid situations when one record has many record

versions

● Firebird works much slower with long record chains. (to

see how many record versions some tables has, and

what is the longest record chain you can use HQbird

IBAnalyst tool, tab Tables, sort on "Max Version").

● Use the combination of inserts and scheduled delete of

old records instead of multiple updates of the same

record.

Long record chains

https://www.ibsurgeon.it/

Sql optimization

● Use PREPARE correctly

○ Use prepared statements to run SQL queries where

only parameters are changed

for example, make prepare before the loop of such queries.

○ Prepare can take significant time (especially for big

tables), and preparing the query only once will

greatly increase the overall performance.

Use Prepare

● Do not keep queries in the prepared state without the

necessity

● The vast majority of them runs only once, and then they

just sit in the RAM, making Firebird working set bigger,

and slow down MON$ queries.

● The recommendation is to keep SQL queries in the

prepared state only they are intended to be started

many times, or if their prepare time is big

Don’t abuse Prepare

● Until SQL query with sorting (ORDER BY, GROUP BY,

UNION, distinct) is not closed, Firebird retains sorted

records in the memory.

● TempCacheLimit allocated the size of memory in

firebird.conf, by default it is 64Mb.

● The recommendation is to close all such queries in a

timely manner.

Always close queries with large sorting

● Don't COMMIT too often during bulk insert/update

operation
○ In the case of bulk INSERT/UPDATE/DELETE operation, don't

commit the transaction after each change

○ It can happen if you are using auto commit option in your

database driver

○ Commit transactions at least after 1000 operations or more.

○ Each transaction commit runs several read/write IO operations

against the database, that's why often commits decrease

database performance.

Commit when needed

● "Turn off" indices if you are using IN with many

constants

○ If you are using construction

WHERE fieldX IN (Constant1, Constant2,… ConstantN)

and there is an index on fieldX, Firebird will use an index

as many times as many constants are in the IN list.

Disable index search by turning fieldX into expression

+0:
WHERE fieldX+0 IN (Constant1, Constant2,… ConstantN)

Or for strings use fieldX||''

Long record chains

● Replace IN with JOIN

○ Avoid using queries with nested WHERE
IN(SELECT... WHERE IN (SELECT.. WHERE IN()))

○ It can confuse Firebird optimizer.

○ Transform nested INs into joins.

Use JOIN instead IN

● Use LEFT JOIN in the correct way

○ If you are using LEFT OUTER joins

explicitly put tables in the join from the smallest

one to the largest one.

LEFT or not LEFT JOIN

Sample:

T1 LEFT JOIN T2 ON (…) WHERE T2.Field_condition

● Change LEFT JOIN to INNER JOIN

● INNER JOIN gives more freedom for Firebird

optimizer, and it is optimized much better than LEFT.

● Especially it makes sense in the following cases
○ No condition for T1 in WHERE clause

○ T2 is a small table

Avoid unnecessary LEFT JOINs

● Limit fetch of SELECT queries

○ Always try to limit the large output for SELECT

queries

with FIRST… SKIP or ROWS clauses.

○ If the query is not designed specifically as a report

(which requires all records to be printed/exported),

usually it is enough to show top 10-100 records.

○ Fetch only necessary records.

FIRST, SKIP and ROWS

● Specify less number of columns in SELECT with ORDER

BY/GROUP BY

● Reduce the number of columns and their summary width in

queries with ORDER BY/GROUP BY both in SELECT part

(i.e., fields to be shown) and in the ORDER BY

● Firebird merges columns from SELECT and ORDER

BY/GROUP BY clauses and sorts them in memory (or, if
memory is not enough, on the disk).

● A long VARCHAR in SELECT, the size of the sort files can

be really large (many gigabytes).

SQL projection

● Use derived tables to optimize SELECT with

ORDER BY/GROUP BY

○ Another way to optimize SQL query with sorting is

to use derived tables to avoid unnecessary sort

operations.

SELECT T.FIELD_KEY, T.FIELD1, T.FIELD2, ... T.FIELD_N
FROM (SELECT FIELD_KEY FROM T ORDER BY FIELD2) T2

JOIN T ON T.FIELD_KEY = T2.FIELD_KEY

SELECT FIELD_KEY, FIELD1, FIELD2, ... FIELD_N
FROM T

ORDER BY FIELD2

Derived tables

● Store short strings in VARCHAR, large in BLOBs
○ To store short character data, use VARCHARs,

○ To store long texts, use BLOBs.

Varchars are faster for the small pieces of data

because they are stored in the record, and the whole record is

read during the same IO cycle, and if record size is less than 2/3

of the database page size, the whole record is stored on the

same database page.

BLOBs are stored outside of the record, and require

the additional round of IO to read it, and they show the advantage

with reading and writing long strings.

VARCHAR or BLOB

● Exclude BLOB columns from the large SELECTs

● Use a kind of late binding with sub-selects to

selectively show information from BLOBs

(for example, show the content of the document).

BLOB

● Use BIGINT type for

○ auto-incremented primary

○ unique keys

○ identifiers of all types.

● Operations with BIGINT are the fastest

● BIGINT has enough capacity to store almost all data

ranges.

Primary Key - BIGINT

● Don't use VARCHARs for keys

○ Don't use VARCHAR for identifiers unless it is

really necessary

○ Operations with them are far less effective than

with integer columns.

○ Especially avoid GUIDs, as identifier due to the

random distribution of GUID values

INSERT/UPDATE operations with Primary/Unique

Keys GUIDs can be 20 times slower than with

integers.

Primary key - VARCHAR

● Recalculate indixes statistics regularly

● Update indices statistics for the tables with frequent or

massive changes with command SET STATISTICS

● It allows Firebird optimizer to choose better SQL plans.

● HQbird Firebird DataGuard can perform such

recalculation of indices statistics automatically according

to the desired schedule (usually once a week).

Indexes stats

https://www.ibsurgeon.it/

● Use connection pool

● If database connections to Firebird database are

short use connection pool

typical for web-app in PHP use

function ibase_pconnect

instead of

ibase_connect

Connection pool

Firebird 3.0

● Use LINGER option

● Database connections are short

● LINGER option to keep cache active during the

specified amount of time

● It will keep frequently used pages in the cache even if

there will be no other connections.

For example, ALTER DATABASE SET LINGER TO 60 will keep the

cache for 60 seconds after the end of the last connection.

LINGER (FB 3-x)

Firebird 3.0

● Use HASH JOINs

● Case the of joining big and small tables, HASH JOIN

could be much faster than normal join which uses

«nested loop» with index.

● To make Firebird optimizer to use HASH join, use +0

in the join condition:

T1 JOIN T2 ON T1.FIELD1+0 = T2.FIELD2+0

HASH JOINs (FB 3.x)

Firebird 3.0

● Mark your PSQL functions which do not have

parameters and return constant values with keyword

DETERMINISTIC.

● The deterministic functions are calculated and

cached in the scope of the current query.

PSQL

Firebird 3.0

● Use analytical (window) functions

● If you are running SELECT with simultaneous output of

some column and aggregated function for it, use window

(analytical) functions

● it is faster than the subquery or 2 queries

SELECT id, department, salary, salary /
(select sum(salary) from employee) percentage

FROM employee

SELECT id, department, salary, salary /
sum(salary) OVER () percentage

FROM employee

Analytical functions

● Use switch -se for gbak

○ Use switch –se to increase gbak backup and/or

restore speed up to 20%

gbak -b -g -se service_mgr c:\db\data.fdb

e:\backup\data.fbk

gbak

● WHERE CURRENT OF

● The fastest way to process records fetched by the

cursor in PSQL is the clause

where current of <>

It is faster than

where rb$db_key = :v_db_key

and much faster than search with a primary or unique

key.

Long record chains

● Avoid often queries to monitoring tables

○ Don't run queries to Firebird monitoring tables

(MON$) too often

such queries consume significant resources and can

greatly decrease the performance of the main

business logic.

Recommend running MON$ queries not often than

once per minute.

MON$

● Use NO_AUTO_UNDO option for bulk inserts/updates

○ If you are running many DML (Update/Insert/Delete)

commands in the frames of the same transaction,

Firebird merges undo-log of each command with

undo-log of the transaction.

○ To speed up bulk DML operations start the transaction

with «NO AUTO UNDO» option, in order to do not

merge undo-logs of each command with the

transaction's undo-log.

NO_AUTO_UNDO

Firebird 3.x

● Do not use SRP authentication in if you don't need it

○ Does not use SRP users authentication if you don't

really need it

○ Connect with SRP authentication is established

slower than the regular connection.

SRP Auth

● Common mistake is to use select count() just

to check the existence of the record.
(select count(*)…. where condition1) >0

Better use this construction instead
Exists(select first 1 id where condition1)

If condition1 returns more than 1 record, the proposed

option will be much faster, because it does not read all

records, it stops after the first fetched record.

Avoid unnecessary counting of records

● The ordering of the query's results

inside the stored procedure should

be justified by the business logic.

Avoid unnecessary sorting in SP
create or alter procedure

NEW_PROCEDURE

returns (

SUMX double precision)

as

declare variable _amount

double precision;

begin

for select T1.amount from

Table1 t1 where

order by id

into :_amount

do

begin

sumx=sumx+_amount

end;

suspend;

end

● Check your PSQL code for similar

situations and remove useless

ORDER BY (as well as distinct

and UNION).

optimization

● Windows Server power plan default set to Balanced
○ It is not suitable for database servers.

● Set it to High Performance and gain approximately

+20% of the performance for CPU-intensive

operations.

● It can be set online, without restart or reboot

Windows power plan

Windows power plan

The picture shows the CPU graph, which

demonstrates the advantage of

"High-performance" power plan

● Firebird with Classic architecture on Windows

Enable «Interact with desktop»

● Without this setting, the resource «desktop heap» is

limited by Windows

Interact with desktop

● Firebird cannot open more

than 250-300 connections

(depends on the metadata of

the database and related

memory consumption) – there

will Out Of Memory error.

● Windows with Domain Controller role disables the write

cache on the disk with Active Directory database.

● We have significantly worse performance than on the

servers without Active Directory roles.

● Please note, that this problem affects such popular

Windows version as Windows Small Business Server

2011, as well as other versions with DC.

Beware of Domain Controller

● OS Memory Manager has implications regarding the

memory allocation, and, by default, Windows requires

40% of RAM for file cache.

● Unfortunately, the poor tool Windows Task

Manager shows memory, which is used for file cache as

«free», and some administrators try to make Firebird

consume all this free memory, so they set

DefaultDBCachePage parameter in firebird.conf to very

high values, and it usually leads to swapping.

RAM for file cache

● Always use RAMMap tool to see the actual memory

usage on Windows.

● Firebird server RULE

𝐹𝐵𝑚𝑒𝑚𝑤𝑠 ≤ 𝑅𝐴𝑀

Firebird memory (Working Set) should be less than 40% of

total RAM.

If the total size of working sets for all processes is more than

50%, swap can be started by Windows.

RAM for file cache

https://docs.microsoft.com/en-us/sysinternals/downloads/rammap

LINUX
optimization

Max open files

Increase «max open files» limit on Linux

● Check limits for your Firebird process (SuperServer or

SuperClassic) with the following command:
cat /proc//limits

pay attention to the line with the max number of open files.

● Firebird can use up to 4 handles per connection, and if

you something like this:
Max open files 4096 4096 files

it means that the total number of connections served by the Firebird

process will be limited to something around 1000.

● Good performance improvement after the migration from
○ CentOS 6 to 7,

○ Ubuntu 12 to 16 (on the same hardware!),

● now it is the must-have recommendation for

database servers with more than 250-300

connections.

● Recommended versions of Linux:

CentOS 7.x and Ubuntu 16, 18.

User modern Linux

● Linux works with file cache in another way than Windows,

● The amount of RAM used for file cache can be

significantly less, than on Windows, without noticeable

performance Firebird degradation.

● However, to guarantee high performance of the

system with the high number of connections,

especially on Classic and SuperClassic, the good idea will

be to reserve 30% of RAM for file cache.

RAM for file cache

Prerequisite: servers with the high number of

cores.

● irqbalance often improves
○ Firebird performance

○ CPU load balancing

irqbalance

Virtual server

● VM can be configured to have more memory than

physically exists on the host machine – with a feature

known Memory Overcommit

● It means that in the case of a peak of memory

consumption (on VM with the database server or on the

neighbor VM) swap can start, which will lead to significant

delays.

● For high-performance VM intended for a database server,

all memory should be static.

Memory Overcommit

● Often VMs are created with default CPU and IO limits

which can be very low, like 50 IOPS and 10% CPU.

● Check your server VM settings and remove any limits -

high-performance database server should have all

possible CPU, bandwidth, and IO.

Check VM limits

Fabio Codebue
P-Soft

www.p-soft.biz

www.firebirdsql.it

@fcodebue

linkedin.com/in/fcodebue

@delphiforce

f.codebue@p-soft.biz

GRAZIE…
Sostienici, diventa un associato …
https://firebirdsql.org/en/membership/

http://www.p-soft.biz/
http://www.firebirdsql.it/
https://www.linkedin.com/in/fcodebue/
mailto:f.codebue@p-soft.biz

Toolz

