
OPENAPI 3.0

Document your REST API

Paolo Rossi
WINTECH ITALIA CTO

Delphi dev
web dev

AGENDA
➔ Documenting REST API, why?
➔ Delphi REST libraries with documentation

◆ WiRL, RAD Server
➔ Swagger (OpenAPI 2)
➔ OpenAPI 3.0
➔ OpenAPI-Delphi

◆ Classes
◆ Serialization

● Neon Library

GITHUB
PROJECT

GITHUB
PROJECTS

WiRL Project
JAX-RS Like REST Library for Delphi

OpenAPI-Delphi
OpenAPI 3.0 library for Delphi

https://github.com/delphi-blocks/WiRL
https://github.com/paolo-rossi/OpenAPI-Delphi

GITHUB
PROJECTS

Delphi JWT
JSON Web Token Library for REST

(and not only REST)

Delphi Neon
JSON Serialization Library for REST

(and not only REST)

https://github.com/paolo-rossi/delphi-jose-jwt
https://github.com/paolo-rossi/delphi-neon

REST API

➔ Q1: have you made a REST service?
◆ Q1.2: what REST library do you use?
◆ Q1.1: if not, are you considering making one?

➔ Q2: for what purpose?

REST API

➔ REST services can be consumed by other
◆ Not in your company

➔ You have to document these APIs in order
to be used by others
◆ Maybe not if you implement HATEOS

➔ How to document a REST API?

REST API

➔ You can write and keep in sync the
documentation by yourself
◆ But what if the REST service is able to document

itself?
➔ What are the tools to document my API?

REST API

SWAGGER TOOLS

SWAGGER TOOLS
➔ SmartBear company
➔ Swagger is a tool (a set of tools)
➔ Specification for the documentation have

been renamed to OpenAPI (more later)
➔ Swagger Editor
➔ Swagger UI

SWAGGER EDITOR
➔ API editor for designing APIs with the

OpenAPI Specification
➔ Can be run locally or accessed on the Web

https://editor.swagger.io/

SWAGGER UI
➔ Visualize OpenAPI specification in an

interactive UI
➔ Collection of HTML, JS, and CSS that

dynamically generate documentation
from a Swagger-compliant API

https://github.com/swagger-api/swagger-ui

RAD SERVER

➔ Demo in:
◆ Object Pascal\Database\EMS\APIDocAttributes

➔ Based on resource’s attributes
➔ Based on OpenAPI 2.0 (ex swagger)
➔ Waiting for OpenAPI 3.0 support

RAD SERVER

WIRL

WIRL
➔ WiRL extracts information from the

resource and resource’s method
➔ Based (currently) on OpenAPI 2.0
➔ Plan to support OpenAPI 3.0 (very soon)
➔ Additional info (will be) based on XMLDoc

as well as custom attributes
◆ I don’t like very much polluting the code with

attributes that aren’t code-related

OPENAPI 3.0

OPENAPI 3.0
➔ OpenAPI Specification (OAS) defines a

standard, language-agnostic interface to
RESTful APIs

➔ Allows both humans and computers to
discover and understand the capabilities of
the service

OPENAPI 3.0
➔ OpenAPI Document

◆ Info object
◆ Servers object
◆ Paths object
◆ Components object
◆ Security object
◆ Tags object
◆ externalDocs object

➔ Demo with OpenAPI-Delphi

NEON LIBRARY

NEON LIBRARY
➔ JSON serializer

◆ Used mostly in REST-like scenario
➔ Open source Apache 2.0
➔ github.com/paolo-rossi/delphi-neon
➔ Tested on Delphi 10.x

◆ Probably works also in XE7, XE8

NEON LIBRARY
➔ Extensive configuration: INeonConfiguration

interface
◆ Word case (UPPERCASE, lowercase, PascalCase,

camelCase, snake_case)
◆ CuStOM CAse (through anonymous method)
◆ Member types (Fields, Properties)
◆ Option to ignore the "F" if you serialize the fields
◆ Member visibility (private, protected, public,

published)

NEON LIBRARY
➔ Extensive configuration

◆ Word case (UPPERCASE, lowercase, PascalCase,
camelCase, snake_case, CuStOM CAse

◆ Member types (Fields, Properties)
◆ Option to ignore the "F" if you serialize the fields
◆ Member visibility (private, protected, public…)
◆ Custom serializer registration
◆ Use UTC date in serialization
◆ Pretty Printing

NEON LIBRARY
➔ Delphi types support

◆ Basic types
● string, Integer, Double, Boolean, TDateTime

◆ Complex types
● Arrays of (basic types, records, classes, etc...)
● Records with fields of… anything
● Classes with fields of… anything
● Generic lists
● Dictionaries (key must be of type string, enum)
● Streamable classes

NEON LIBRARY
➔ Custom Serializers

◆ Inherit from TCustomSerializer and register this new
class in the configuration

◆ Supported classes, records, arrays…
◆ In the custom serializer you can continue with the

standard serializer
➔ Demo

OPENAPI-DELPHI

OPENAPI-DELPHI
➔ OpenAPI 3.0 generator and parser

◆ Validator is a work in progress
➔ Open source Apache 2.0
➔ github.com/paolo-rossi/OpenAPI-Delphi
➔ Tested on Delphi 10.x

◆ Probably works also in XE7, XE8
➔ Designed affier Microsoffi OpenAPI.NET

OPENAPI-DELPHI
➔ Plain Old Delphi Objects as models

◆ Very complex object model
◆ Difficult in a statically typed language
◆ Very difficult to serialize -> Neon Library

procedure TForm1.Button1Click(Sender: TObject);
var
 LSchema: TOpenAPISchema;
begin
 LSchema := TOpenAPISchema.Create;

 LSchema.Title := 'Titolo';
 LSchema.Type_ := 'object';

 LSchema.Not_ := TOpenAPISchema.Create;
 LSchema.Not_.Title := 'SubSchema';

 Memo1.Lines.Text := TNeon.ObjectToJSONString(LSchema, GetNeonConfiguration);

 LSchema.Free;
end;

SOURCE CODE

procedure TForm1.Button1Click(Sender: TObject);
var
 LSchema: TOpenAPISchema;
begin
 LSchema := TOpenAPISchema.Create;
 try
 LSchema.Title := 'Titolo';
 LSchema.Type_ := 'object';

 LSchema.Not_ := TOpenAPISchema.Create;
 LSchema.Not_.Title := 'SubSchema';
 LSchema.Type_ := 'string';

 Memo1.Lines.Text := TNeon.ObjectToJSONString(LSchema, GetNeonConfig);
 finally
 LSchema.Free;
 end;
end;

SOURCE CODE

