
Bogdan Polak
bogdan.polak@bsc.com.pl

Modernization of the legacy
VCL projects

Bogdan Polak
BSC Polska (Poland)

bogdan.polak@bsc.com.pl
bogdanpolak

ABOUT ME

Company:

BSC Polska
• Embarcadero Partner @ Poland

• Sales and Training

• 1000+ customers

• 80% Delphi teams

• Community supporter

26 yrs developer

19 yrs Delphi developer

14 yrs trainer / mentor / sales
engineer

4+ yrs project modernization

INTRODUCTION

Code Maturity

Bitten code
Zero warnings policy

Cleaning uses section

Clean code
Refactoring tasks

Clean code rules

Code reviews

Formatted code

Style Guide

Solid code
Reusable code

Good practices

Patterns and principles

Architect on board

Testable code

1 2 3 4
Code as you like

No rules

Just working code

Working code

Messy code
It was

By Andrew Butko, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25990155

Do you want to
be a veteran?

Stagnation
Current tasks prevent changes

Demotivation
Developers aren’t motivated to

change

Dinosaurs
Old-timers, difficulties in recruiting

younger developers  

Bad habits
Developers are aware that they can

work better

Black hole
This project will never be better, its

destiny is a death

Developers, Developers, Developers …

Inspiration

Martin Fowler

„When my coauthors and I wrote Design Patterns, we mentioned
that design patterns provide targets for refactorings.
However, identifying the target is only one part of the problem;
transforming your code; so that you get there is another

challenge.”

„The refactorings in this book will help you change your code
one small step at a time, thus reducing the risks of evolving

your design.”

„My first experience with disciplined, "one step at a time"
refactoring was when I was pair-programming at 30,000 feet with
Kent Beck. He made sure that we applied refactorings from this
book's catalog one step at a time. I was amazed at how well

this practice worked.”

Erich Gamma in the book foreword

Starting point
● OnClick coding

● Visual everything

● Spaghetti

● Form centric

● Copy - paste - customize

● Bug driven development

● Get lost! My code is mine

Data Layer
(data modules)

Form Form Form

Expected Benefits
● Satisfaction - improved
● Efficiency - increased
● Respectability - fewer errors in the code
● Team work - developers will learn how to work together
● Cleanliness - cleaner code, defined good practices
● Recruitment - easier to introduce a new team members
●Motivation - gamification, learning, trainings, open-source activities,

hackatons, architect role
● Visibility - what others are doing, quality and performance indicators
● Predictability - task planing and effort reporting

Effort

10% If you are coding
40 hours per

week

4 h

The Plan

The Plan

➔ Phase 1 -- Clean-ups

➔ Phase 2 -- Extraction

➔ Phase 3 -- Decomposition

➔ Phase 4 -- Improvements

Clean-ups

PHASE 1

1 Warnings

Hints

Unit SuperStar;

interface

uses … ;

implementation

uses … ;

• Warnings and hints - remove
• Uses section - clean-up
• Long methods - divide (extract smaller ones)
• Dead code - remove
• Outdated comments - remove
• TODO - add

ACTION

LIKE THIS - NEED MORE

• WT - Warning Toxicity

• PUP - Public Uses Pollution

• Automation !!!

VISIBILITY - MEASURES

Scout Badges

Refactoring

M
as

te
r

[Number Of Warnings And Hints] / [Number Of Units]

[Number Non RTL/VCL Units in the Interface Uses Section]

HOW TO MESURE DELPHI CODE?

DelphiAST

https://github.com/RomanYankovsky/DelphiAST

Abstract Syntax Tree

Delphi Metrics
AuditsCLI.exe --metrics

http://docwiki.embarcadero.com/RADStudio/Rio/en/
AuditsCLI.EXE,_the_Command_Line_Audits_and_Metrics_Tool

https://github.com/RomanYankovsky/DelphiAST
http://docwiki.embarcadero.com/RADStudio/Rio/en/AuditsCLI.EXE,_the_Command_Line_Audits_and_Metrics_Tool
http://docwiki.embarcadero.com/RADStudio/Rio/en/AuditsCLI.EXE,_the_Command_Line_Audits_and_Metrics_Tool

• Gamification
• Public measures
• Winner Company Board
• Modernization as a game

• TODO
• Adding
• Removing

• Internal trainings
• How to …

PHASE 1 - LEARNING & IMPROVEMENT

Extraction
Move code to Data Modules / Data Units

PHASE 2

2Data
Layer

Scissors

1. Find all „red lines"
๏ Measure

2. Move code
๏ Extract this code into a separate

method
๏ Move this methods to the form

3. Remove dependencies
๏ Clean uses
๏ Remove all forms

ACTION 1 - REMOVE DEPENDENCIES

Form

Data Module

Notifica
tions

ACTION 2 - INCREASE DATA LAYER WEIGHT

Form

Data Layer

Form

Form

Data Layer

Form

New code

STYLE GUIDE

1. Timer & Flag

2. Callback / Event

3. Event Bus

4. Observer Pattern

5. … (what you like) (just do it)

NOTIFICATION PATTERN

Use
s F

orm
1,

For
m2,

 Fo
rm3

’ F
orm

4;

FUDT

• FUDT
• Forms Used by Data layer Toxicity
• Number of forms used by a data layer

• D-LOC
• Lines of code in the data layer

• D-NOO
• Number of operations in the data layer
• Number of the private / public methods
• Important: private methods

MEASURES

Refactoring

M
as

te
r

GAMIFICATION - TOXICITY GRAPH

week week week week

Percentage of bad uses for each developer

Matteo

Andrea

Lorenzo

Owner

• Repository
• Git, git and git

• Code reviews
• How to be a good reviewer
• Review: new methods in the

data module
• Discuss TODO’s
• Internal communication platform

like GitHub 

• Style Guide
• Naming Convention
• Code formatting

• Cleaning Code
• Smaller methods
• Self explaining and readable

code

PHASE 2 - LEARNING

code

SIDE EFFECT

Data Module

Form Form Form

Data
Module

Open API

Data Module Data
Module

Decomposition

PHASE 3

3

ACTION PLAN

Data Module

Form
Form

Data Data

Data

Class

Class

Class Class Class Class Class

Class

Class

Form Form
Helper

Component Component
Helper

Helper

ACTION PLAN

Decomposition

Single responsibility
Images from: https://refactoring.guru/smells

https://refactoring.guru/smells

• OOP fundaments
• Abstraction
• Encapsulation
• Decomposition
• Generalization
• Separation of Concerns

• Delphi techniques
• Class helpers
• Anonymous methods
• Generic types
• TAction
• TComponent

CODING TECHNIQUES

• MOL
• Maximum operation length
• Counts numer of lines in each method

• NOC
• Number of Classes

• MNOP
• Maximum Number Of Parameters
• Counted for each function

• NOHC
• Number of Helper Classes

PHASE 3 - MEASURES

Refactoring

M
as

te
r

• Continuous Integration
• Code reviews

• Review commits
• Common Code

• Helpers repository
• Components (not registred)
• Reusable OOP code

• Internal trainings
• Unit tests
• Law of Demeter
• SRP
• Patterns
• OOP libraries (Spring4D,…)
• Pair Programming sessions

PHASE 3 - LEARNING

• Architect
• Migration Leader
• Not a manager
• Adviser and coach
• Book reader
• Blog writer
• Community activist

PHASE 3 - IT’S TIME TO FIND

The Architect

Improvement

PHASE 4

4

ACTION

Dependency Injection
Manager

SOLID principles

Factory Method Decorator

Observer Strategy

GoF Patterns
C

M

V

• Architectural communication
• SOLID principles
• MVC
• GoF Patterns

• Domain knowledge
• Bounded context
• Continuous integration

• SOA
• Micro-services

• Code decoupling
• Interfaces
• Minimize the number of

dependencies
• Autonomous units

• TDD

ACTION PLAN

• Toxicity Index
• Delphi Toxicity Index

• CC
• Cyclomatic Complexity
• Number of cycles in the method

• DOIH
• Depth Of Inheritance Hierarchy

• MNOL
• Maximum Number Of Levels
• Depth of if, for and while branches in the method

• NOI
• Number of Interfaces

PHASE 4 - MEASURES

Refactoring

M
as

te
r

Cyclomatic Complexity
Number of possible paths through an
algorithm by counting the number of
distinct regions on a flowgraph,
meaning the number of if, for, and
while statements.

McCabe 1976

PHASE 4 - LEARNING

• Safety Net
• Cover classes with unit tests

• Integration tests
• DUnitX can help
• SOA tests

• Acceptance tests
• Record / Playback

UNIT TESTING

Unit tests

Class

Unit tests

Class

Unit tests

Class

Summary

Understand 4 Phases

1

2

3

Clean-ups

Form’s Events

Extraction
Unit

Decomposition

4 Architecture

Improvement

Time

1 2 3 4

1 2 3 4

Refactoring effort

(10%+)

Executive Level Sponsorship
● Strong C-level commitment
● Funding: 10%
● POC = Proof of Concept
● ROI - Clear and defined
● Defined milestones

Image: Business vector created by macrovector (https://www.freepik.com/free-photos-vectors/business)

https://www.freepik.com/free-photos-vectors/business

Key elements

Action Plan

Visibility

Learn

