
EVOLUTIONARY
(SOFTWARE)

ARCHITECTURES



Paolo Rossi
Delphi dev

paolo@paolorossi.net
www.paolorossi.net
blog.paolorossi.net

mailto:paolo@paolorossi.net
http://www.paolorossi.net
http://blog.paolorossi.net/


AGENDA
➔ Architectures
➔ Evolutionary Architectures
➔ Change and Architectural Dimensions
➔ Fitness Functions
➔ Evolving DataBases
➔ Examples and Tools
➔ Books & Resources



The scope is too large for a concise definition

Ralph Johnson’s definition

SOFTWARE
ARCHITECTURES

the important stuff (whatever that is)



SOFTWARE
ARCHITECTURES

Hard to change over time





EVOLUTIONARY
ARCHITECTURES

“An evolutionary architecture 
supports guided, incremental change 

across multiple dimensions”



ARCHITECTURAL
FACTORS

➔ Architects must determine the most 
important ones
◆ Accessibility
◆ Scalability
◆ Performance
◆ Security
◆ etc...



“ILITIES”
accessibility
accountability
accuracy
adaptability
administrability
affordability
agility
auditability
autonomy
availability
compatibility
composability
configurability
correctness
credibility
customizability

debugability
degradability
determinability
demonstrability
dependability
deployability
discoverability
distributability
durability
effectiveness
efficiency
usability
extensibility
transparency
fault tolerance
fidelity

flexibility
inspectability
installability
integrity
interoperability
learnability
maintainability
manageability
mobility
modifiability
modularity
operability
orthogonality
portability
precision
predictability

producibility
provability
recoverability
relevance
reliability
repeatability
reproducibility
resilience
responsiveness
reusability
robustness
safety
scalability
seamlessness
self-sustainability
serviceability

securability
simplicity
stability
standards 
compliance
survivability
sustainability
tailorability
testability
timeliness
traceability



We want to add a new standard “-ility” to 
software architecture

TIME AS 4D

EVOLVABILITY

The time becomes the 4th dimension



EVOLUTIONARY
ARCHITECTURES

Software becomes harder to change over time

Don’t let that become a
self fulfilling prophecy



CHANGE

IS INEVITABLE



➔ Programming languages
➔ Programming language evolution
➔ Libraries
➔ Frameworks
➔ Tools
➔ Constraints

TECHNICAL



➔ Revenue models
➔ Competitors
➔ Customer needs
➔ Markets
➔ Products
➔ Legal requirements

DOMAIN



IF CHANGE

IS INEVITABLE THEN





➔ How teams build software incrementally
➔ How they deploy it
➔ Continuous delivery is a key practice

INCREMENTAL 
CHANGE



➔ We want to guide the change
◆ Rather than suffer from it

➔ Introducing the “Fitness Functions”
◆ From evolutionary computing

➔ The key is to measure everything
◆ More on later

GUIDED
CHANGE



ARCHITECTURAL
DIMENSIONS

There are no separate systems



➔ Technical dimensions
◆ Languages
◆ Frameworks
◆ Libraries

➔ Beyond technical architecture
◆ Legal aspects
◆ Auditability

ARCHITECTURAL
DIMENSIONS





“Organizations which design systems … are 
constrained to produce designs which are 
copies of the communication structures of 

these organizations”

CONWAY'S LAW



➔ The social structures (the communication 
paths between people) inevitably 
influence final product design

➔ Delegation means communication 
problems (or difficulties)

ARCHITECTURAL
TEAMS



➔ Example:
◆ Layered architecture: team is separated by 

technical function (UI, business logic, data 
access)

◆ Solving common problems that cut vertically 
across layers increases coordination work

ARCHITECTURAL
TEAMS



ARCHITECTURAL
TEAMS

Structure teams like your target architecture





FITNESS FUNCTIONS



DEFINITION

“An architectural fitness function provides 
an objective integrity assessment of some 

architectural characteristic(s)”



➔ Fitness functions check that developers 
preserve important architectural 
characteristics

➔ But, what is better?
➔ Find a way to measure better
➔ Ok, but what is a FF in reality?

F.F.



➔ Specific architectural requirements differ 
greatly across systems and organizations

➔ They are based on
◆ Business requirements
◆ Technical capabilities
◆ Client needs
◆ ...

F.F.



➔ Examples of FF:
◆ Intense security
◆ Low latency
◆ Resilience to failure

➔ Remember the “-ilities” 
➔ Fitness functions embody a protection 

mechanism for the “-ilities” of a given 
system

F.F.



➔ Collection of FF
➔ They help to “measure” the system as a 

whole
➔ There are tradeoff 

◆ Is more important the scalability or the security?
◆ So 

SYSTEMWIDE F.F.







REAL WORLD EXAMPLES
➔ Performance

◆ Server have to respond in 100ms
➔ Scalability

◆ System must manage up to 100.000 sessions
➔ Coding standard

◆ Cyclomatic complexity must be lower than 100
➔ Legal requirements

◆ GDPR must be complied with



REAL WORLD EXAMPLES
➔ At every iteration we know how if the system 

remains closer the the goals
➔ Save the FF and look at them over time
➔ Introduce FF early (and often) to pick up inflection 

points
➔ Measure everything



TOOLS
➔ Version control systems

◆ Git, Subversion
➔ Continuous delivery

◆ Jenkins, Travis
➔ Code Review

◆ Delphi Metrics, Pascal Analyzer, Scientific 
Toolworks Understand



TOOLS
➔ Configuration Management

◆ Chef, Puppet
➔ Monitoring

◆ Nagios, Zabbix
➔ Containers

◆ Docker, Kubernetes



DATABASE

Evolution?????



EDBD
➔ Evolutionary DataBase Design

◆ Aka Database refactoring
➔ Controversial topic
➔ Software evolves

◆ Why not the schema data?
◆ Why not the Database

➔ EDBD is not about change in the schema data only 
as consequence

➔ EDBD is about embracing the change (evolution)



EDBD

The bible



TDBD
➔ Traditional DataBase Design
➔ TDBD assumes that evolving database schemas it’s 

a hard thing to do, so is best not do do it
➔ TDBD needs to model in detail all data aspects of a 

system early in the life-cycle
➔ Nothing wrong with that but this is not the reality
➔ What’s the average state of real databases?



TDBD
➔ Existing state of production databases

◆ Columns that are no longer being used
◆ Columns never used
◆ Columns that are being used for several 

purposes
◆ Columns that contains various data type

● Usually string columns containing other types



TDBD
➔ In practice we are not very good at getting the 

design right up front
➔ So the requirements do in fact change over time

In a fast changing environment TDBD is
not the right approach



EDBD vs TDBD
➔ Resistance among traditional DBA and DB designers

◆ Too much DB sandboxes
◆ Duplicate data management
◆ Temporary time-frame in which we have multiple 

schema alive
◆ Triggers to ensure data integrity



BOOKS



BOOKS



ONLINE RESOURCES
➔ Microservices as an Evolutionary Architecture:

◆ https://www.thoughtworks.com/insights/blog/microservices-evolutio
nary-architecture

➔ Characteristics of Evolutionary Architectures:
◆ https://www.infoq.com/news/2016/03/evolutionary-architectures

➔ My take on Evolutionary Architecture:
◆ https://medium.com/developers-writing/my-take-on-evolutionary-arc

hitecture-f761d45e75b9

➔ Approaches to Evolutionary Architectural Design:
◆ http://ncra.ucd.ie/papers/JonathanByrneThesis.pdf

➔ Evolutionary Database Design
◆ https://www.martinfowler.com/articles/evodb.html

https://www.thoughtworks.com/insights/blog/microservices-evolutionary-architecture
https://www.thoughtworks.com/insights/blog/microservices-evolutionary-architecture
https://www.infoq.com/news/2016/03/evolutionary-architectures
https://medium.com/developers-writing/my-take-on-evolutionary-architecture-f761d45e75b9
https://medium.com/developers-writing/my-take-on-evolutionary-architecture-f761d45e75b9
http://ncra.ucd.ie/papers/JonathanByrneThesis.pdf
https://www.martinfowler.com/articles/evodb.html



